cos(2α+π)
sin(α-
π
4
)
=
2
2
,則sinα+cosα的值為( 。
A、-
7
2
B、-
1
2
C、
1
2
D、
7
2
考點(diǎn):兩角和與差的正弦函數(shù),運(yùn)用誘導(dǎo)公式化簡求值,二倍角的余弦
專題:三角函數(shù)的求值
分析:直接利用兩角和與差的三角函數(shù)以及二倍角公式化簡已知條件,然后求解即可.
解答: 解:∵
cos(2α+π)
sin(α-
π
4
)
=
2
2
,
sin2α-cos2α
2
2
(sinα-cosα)
=
2
2
,
∴sinα+cosα=
1
2

故選:C.
點(diǎn)評:本題考查兩角和與差的三角函數(shù),二倍角公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
、
n
滿足|
m
|=2,|
n
|=3,|
m
-
n
|=
17
,則
m
n
=( 。
A、-
7
B、-1
C、-2
D、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a=1,b=
3
,A=30°,則B等于( 。
A、60°
B、60°或120°
C、30°或150°
D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上的拋物線上的一點(diǎn)P(m,-2)到焦點(diǎn)的距離為4,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某服裝批發(fā)市場,某種品牌的時(shí)裝當(dāng)季節(jié)將來臨時(shí),價(jià)格呈上升趨勢,設(shè)這種時(shí)裝開始時(shí)定價(jià)為20元/件(第一周價(jià)格),并且每周價(jià)格上漲,如圖所示,從第6周開始到第11軸保持30元/件的價(jià)格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時(shí),每周下跌,直到第16周周末,該服裝不再銷售.
(1)求銷售價(jià)y(元/件)與周次x之間的函數(shù)關(guān)系式;
(2)若這種時(shí)裝每件進(jìn)價(jià)Z與周次x次之間的關(guān)系為Z=-0.125(x-8)2+12.(1≤x≤16,且x為整數(shù)),試問該服裝第幾周出售時(shí)每件銷售利潤最大?最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(1-x)ex的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的公差為d,點(diǎn)(an,bn)(n∈N*)在函數(shù)f(x)=2x的圖象上.
(1)證明:數(shù)列{bn}為等比數(shù)列;
(2)若a1=1,函數(shù)f(x)的圖象在點(diǎn)(a2,b2)處的切線在x軸上的截距為2-
1
ln2
,求數(shù)列{anbn}2(n∈N*)的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
lnx(0<x≤1)
2x+
3
x
(x>1)
,若函數(shù)g(x)=f(x)-kx+k的零點(diǎn)有2個(gè),則k的取值范圍( 。
A、(1,2]
B、(0,1]
C、(1,3]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,ax2+ax+1≥0,若?p是真命題,則實(shí)數(shù)a的取值范圍是(  )
A、(0,4]
B、[0,4]
C、(-∞,0]∪[4,+∞)
D、(-∞,0)∪(4,+∞)

查看答案和解析>>

同步練習(xí)冊答案