12.在數(shù)列{an}中,a1=-11,2an=2an-1+3(n≥2),Sn為數(shù)列{an}的前n項(xiàng)和,則Sn的最小值為-46.

分析 根據(jù)數(shù)列的遞推關(guān)系,得到數(shù)列{an}是等差數(shù)列,結(jié)合等差數(shù)列的前n項(xiàng)和公式以及一元二次函數(shù)的性質(zhì)進(jìn)行求解即可.

解答 解:∵a1=-11,2an=2an-1+3(n≥2),
∴an=an-1+$\frac{3}{2}$,(n≥2),
即an-an-1=$\frac{3}{2}$,
即數(shù)列{an}是公差d=$\frac{3}{2}$的等差數(shù)列,
則Sn=na1+$\frac{n(n-1)}{2}$d=-11n+$\frac{n(n-1)}{2}$×$\frac{3}{2}$=$\frac{3}{4}$n2-$\frac{47}{4}$n,
對應(yīng)的拋物線開口向上,對稱軸為n=-$\frac{-\frac{47}{4}}{2×\frac{3}{4}}$=$\frac{47}{6}$,
∴當(dāng)n=8時,Sn取得最小值,最小值為S8=-11×8+$\frac{8×7}{2}$×$\frac{3}{2}$=-88+42=-46,
故答案為:-46;

點(diǎn)評 本題主要考查數(shù)列求和的應(yīng)用,根據(jù)條件得到數(shù)列{an}是公差d=$\frac{3}{2}$的等差數(shù)列,結(jié)合一元二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)角α的頂點(diǎn)與原點(diǎn)O重合,始邊與x軸的非負(fù)半軸重合,P(-2,-2$\sqrt{3}$)是角α終邊上一點(diǎn),則sin2α的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集U={0,1,2,3,4,5},集合A={x∈N|x2-4x-5<0},B={1,2,4,5},則∁U[A∩(∁UB)]=( 。
A.{0,3}B.{2,4,5}C.{1,2,3,4}D.{1,2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知5a=2,則log580-3log210=( 。
A.a4-3a-2B.a4-$\frac{3}{a}$-2C.a-2D.4a-$\frac{3}{a}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知邊長為2的等邊△ABC,其中點(diǎn)P,Q,G分別是邊AB,BC,CA上的三點(diǎn),且AP=$\frac{1}{2}$AB,BQ=$\frac{1}{3}$BC,CG=$\frac{1}{4}$CA,則$\overrightarrow{PQ}$•$\overrightarrow{PG}$=(  )
A.$\frac{5}{12}$B.$\frac{7}{12}$C.$\frac{3}{4}$D.$\frac{11}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=loga(x+1),函數(shù)y=g(x)與y=f(x)的圖象關(guān)于直線x=a對稱
(1)求函數(shù)g(x)的解析式,并指出其定義域;
(2)設(shè)函數(shù)h(x)=g(x)-f(-x),若對任意的x∈[0,1),總有h(x)≥3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若i為虛數(shù)單位,圖中網(wǎng)格紙的小正方形的邊長是1,復(fù)平面內(nèi)點(diǎn)Z表示復(fù)數(shù)z,則復(fù)數(shù)$\frac{z}{1+2i}$=$\frac{3}{5}+\frac{4}{5}i$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,正△ABC的邊長為4,CD是AB邊上的高,E,F(xiàn)分別是AC和BC邊的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.

(1)試判斷直線AB與平面DEF的位置關(guān)系,并說明理由;
(2)求棱錐E-DFC的體積;
(3)在線段BC上是否存在一點(diǎn)P,使AP⊥DE?如果存在,求出$\frac{BP}{BC}$的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.經(jīng)調(diào)查,某地居民家庭年飲食支出y(單位:千元)對家庭年收入(單位:千元)的回歸直線方程y=2.5x+3.2.據(jù)此分析,該地居民家庭年收入每增加到1千元,年飲食支出( 。
A.平均增加2.5千元B.平均減少2.5千元C.平均增加3.2千元D.平均減少3.2千元

查看答案和解析>>

同步練習(xí)冊答案