9.已知|$\overrightarrow{a}$|=2,$\overrightarrow$是單位向量,且$\overrightarrow{a}$與$\overrightarrow$夾角為60°,則$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)等于3.

分析 依題意,利用平面向量的數(shù)量積即可求得$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)的值.

解答 解:∵|$\overrightarrow{a}$|=2,$\overrightarrow$是單位向量,且$\overrightarrow{a}$與$\overrightarrow$夾角為60°,
∴$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=${\overrightarrow{a}}^{2}$-$\overrightarrow{a}$•$\overrightarrow$=4-2×1×$\frac{1}{2}$=3,
故答案為:3.

點(diǎn)評(píng) 本題考查平面向量數(shù)量積的運(yùn)算,掌握平面向量的數(shù)量積的運(yùn)算性質(zhì)及定義是解決問題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某服裝銷售公司進(jìn)行關(guān)于消費(fèi)檔次的調(diào)查,根據(jù)每人月均服裝消費(fèi)額將消費(fèi)檔次分為0-500元;500-1000元;1000-1500元;1500-2000元四個(gè)檔次,針對(duì)A,B兩類人群各抽取100人的樣本進(jìn)行統(tǒng)計(jì)分析,各檔次人數(shù)統(tǒng)計(jì)結(jié)果如下表所示:
檔次
人群
0~
500元
500~
1000元
1000~
1500元
1500~
2000元
A類20502010
B類50301010
月均服裝消費(fèi)額不超過1000元的人群視為中低消費(fèi)人群,超過1000元的視為中高收入人群.
(Ⅰ)從A類樣本中任選一人,求此人屬于中低消費(fèi)人群的概率;
(Ⅱ)從A,B兩類人群中各任選一人,分別記為甲、乙,估計(jì)甲的消費(fèi)檔次不低于乙的消費(fèi)檔次的概率;
(Ⅲ)以各消費(fèi)檔次的區(qū)間中點(diǎn)對(duì)應(yīng)的數(shù)值為該檔次的人均消費(fèi)額,估計(jì)A,B兩類人群哪類月均服裝消費(fèi)額的方差較大(直接寫出結(jié)果,不必說明理由).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-5|-|x-2|.
(1)若?x∈R,使得f(x)≤m成立,求m的范圍;
(2)求不等式x2-8x+15+f(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1所示,在等腰梯形ABCD中,$BE⊥AD,BC=3,AD=15,BE=3\sqrt{3}$.把△ABE沿BE折起,使得$AC=6\sqrt{2}$,得到四棱錐A-BCDE.如圖2所示.

(1)求證:面ACE⊥面ABD;
(2)求平面ABE與平面ACD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,$A=\frac{π}{3},AB=2$,其面積等于$\frac{{\sqrt{3}}}{2}$,則BC等于( 。
A.$\sqrt{3}$B.$\sqrt{7}$C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知F為拋物線C:x2=2py(p>0)的焦點(diǎn),過F的直線l與C交于A,B兩點(diǎn),M為AB中點(diǎn),點(diǎn)M到x軸的距離為d,|AB|=2d+1.
(1)求p的值;
(2)過A,B分別作C的兩條切線l1,l2,l1∩l2=N.請(qǐng)選擇x,y軸中的一條,比較M,N到該軸的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若y=sin($\frac{π}{2}$+x),則y′=-sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=ex(-x2+2x+a)在區(qū)間[a,a+1]上單調(diào)遞增,則實(shí)數(shù)a的最大值為$\frac{-1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a+i=(1+2i)•ti(i為虛數(shù)單位,a,t∈R),則t+a等于( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案