14.在銳角△ABC中,角A,B,C對應(yīng)的邊分別是a,b,c,已知cos2A+$\sqrt{3}$sin(B+C)=1.
(Ⅰ)求角A的大;
(Ⅱ)若△ABC的面積S=10$\sqrt{3}$,c=5,求sinBsinC的值.

分析 (Ⅰ)由cos2A+$\sqrt{3}$sin(B+C)=1,可得:cos2A-$\sqrt{3}$sinA=1,再利用倍角公式即可得出.
(Ⅱ)S=$\frac{1}{2}$bcsinA=10$\sqrt{3}$,c=5,解得b,由余弦定理得:a2,利用正弦定理可得sinBsinC=$\frac{bsinA}{a}×\frac{csinA}{a}$,即可得出.

解答 解:(Ⅰ)由cos2A+$\sqrt{3}$sin(B+C)=1,可得:cos2A-$\sqrt{3}$sinA=1,
∴2sin2A=$\sqrt{3}$sinA,sinA∈(-1,1).
解得sinA=$\frac{\sqrt{3}}{2}$,∴A=60°.
(Ⅱ)S=$\frac{1}{2}$bcsinA=10$\sqrt{3}$,c=5,解得b=8,由余弦定理得:a2=52+82-2×5×8cos60°=49,
∴sinBsinC=$\frac{bsinA}{a}×\frac{csinA}{a}$=$\frac{30}{49}$.

點(diǎn)評 本題考查了正弦定理余弦定理、倍角公式、誘導(dǎo)公式、三角形面積計算公式的應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左焦點(diǎn)向圓x2+y2=a2作一條切線,若該切線與雙曲線的兩條漸進(jìn)線分別相交于第一、二象限,且被雙曲線的兩條漸進(jìn)線截得的線段長為$\sqrt{3}a$,則該雙曲線的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.將函數(shù)y=$\sqrt{3}cosx+sinx({x∈R})$的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是(  )
A.$\frac{π}{6}$B.$\frac{π}{12}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\frac{1-tan17°tan28°}{tan17°+tan28°}$等于( 。
A.-1B.1C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=sin(2x+\frac{π}{6})+sin(2x-\frac{π}{6})+cos2x+1$
(1)求函數(shù)f(x)的最小正周期和函數(shù)的單調(diào)遞增區(qū)間;
(2)已知△ABC中,角A,B,C的對邊分別為a,b,c,若$f(A)=3,B=\frac{π}{4},a=\sqrt{3}$,求AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在棱長為2的正方體ABCD-A1B1C1D1中,E是BC的中點(diǎn),F(xiàn)是DD1的中點(diǎn),
(I)求證:CF∥平面A1DE;
(Ⅱ)求二面角A1-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足:|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4
(1)若($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=-20,求向量$\overrightarrow{a}$與$\overrightarrow$的夾角及|3$\overrightarrow{a}$+$\overrightarrow$|
(2)在矩形ABCD中,CD的中點(diǎn)為E,BC的中點(diǎn)為F,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,試用向量$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AE}$,$\overrightarrow{AF}$,并求$\overrightarrow{AE}•\overrightarrow{AF}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓G:$\frac{{x}^{2}}{{3b}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(b>0)的上、下頂點(diǎn)和右焦點(diǎn)分別為M、N和F,且△MFN的面積為4$\sqrt{2}$.
(1)求橢圓G的方程;
(2)若斜率為1的直線l與橢圓G交于A、B兩點(diǎn).以AB為底作等腰三角形,頂點(diǎn)為P(-3,2),求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.點(diǎn)P在雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1,F(xiàn)2,直線PF1與以坐標(biāo)原點(diǎn)O為圓心,a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過點(diǎn)F2,則$\frac{{S}_{△O{F}_{1}A}}{{S}_{△P{F}_{1}{F}_{2}}}$的值為$\frac{1}{8}$.

查看答案和解析>>

同步練習(xí)冊答案