【題目】已知的內角的對邊分別為,且

1)求角的大;

2)若的面積為,且,求的值.

【答案】1;(2.

【解析】試題分析:(1)根據(jù)正弦定理和三角形內角和定理,化簡得到, ;(2)利用三角形面積公式,求得,利用余弦定理,求得,故.

試題解析:

1,

..........................2

...........................4

,,............................6

2,

...................................8

,

..............................11

.........................12

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖在正方體中中,

(1)求異面直線所成的角;

(2)求直線D1B與底面所成角的正弦值;

(3)求二面角大小的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其中.

I)若,且時,的最小值是-2,求實數(shù)的值;

II)若,且時,有恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】公司從某大學招收畢業(yè)生,經(jīng)過綜合測試,錄用了名男生和名女生,這名畢業(yè)生的測試成績如莖葉圖所示(單位:分),公司規(guī)定:成績在分以上者到甲部門工作;分以下者到乙部門工作,另外只有成績高于分才能擔任助理工作。

(1)如果用分層抽樣的方法從甲部門人選和乙部門人選中選取人,再從這人中選人,那么至少有一人是甲部門人選的概率是多少?

(2)若從所有甲部門人選中隨機選人,用表示所選人員中能擔任助理工作的男生人數(shù),寫出的分布列,并求出的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為奇函數(shù)

1)比較的大小,并說明理由.(提示:

2)若,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用單位:萬元與隔熱層厚度單位:cm滿足關系,若不建隔熱層,每年能源消耗費用為8萬元,設為隔熱層建造費用與20年的能源消耗費用之和.

1的值及的表達式;

2隔熱層修建多厚時,總費用達到最小,并求最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓內有一點為過點且傾斜角為的弦.

(1)當時,求弦的長;

(2)當弦平分時,圓經(jīng)過點且與直線相切于點,求圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機詢問某大學40名不同性別的大學生在購買食物時是否讀營養(yǎng)說明,得到如下列聯(lián)表:

性別與讀營養(yǎng)說明列聯(lián)表

總計

讀營養(yǎng)說明

16

8

24

不讀營養(yǎng)說明

4

12

16

總計

20

20

40

根據(jù)以上列聯(lián)表進行獨立性檢驗,能否在犯錯誤的概率不超過0.01的前提下認為性別與是否讀營養(yǎng)說明之間有關系?

從被詢問的16名不讀營養(yǎng)說明的大學生中,隨機抽取2名學生,求抽到男生人數(shù)的分布列及其均值即數(shù)學期望

注:,其中為樣本容量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正三棱柱(側棱垂直于底面,且底面是正三角形)中,是棱上一點.

(1)若分別是的中點,求證:平面;

(2)若上靠近點的一個三等分點,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案