A. | $\frac{a^3}{6}$ | B. | $\frac{a^3}{12}$ | C. | $\frac{{\sqrt{3}{a^3}}}{12}$ | D. | $\frac{{\sqrt{2}{a^3}}}{12}$ |
分析 三棱錐B-ACD是一個正四面體.過B點作BO⊥底面ACD,則點O是底面的中心,由勾股定理求出BO,由此能求出三棱錐D-ABC的體積.
解答 解:∵邊長為a的菱形ABCD中,∠ABC=60°,將該菱形沿對角線AC折起,使BD=a,
∴由題意可得:三棱錐B-ACD是一個正四面體.如圖所示:
過B點作BO⊥底面ACD,垂足為O,
則點O是底面的中心,
AO=$\frac{2}{3}×\sqrt{{a}^{2}-(\frac{a}{2})^{2}}$=$\frac{\sqrt{3}}{3}a$.
在Rt△ABO中,
由勾股定理得BO=$\sqrt{A{B}^{2}-A{O}^{2}}$=$\sqrt{{a}^{2}-(\frac{\sqrt{3}}{3}a)^{2}}$=$\frac{\sqrt{6}}{3}a$.
∴三棱錐D-ABC的體積V=$\frac{1}{3}×{S}_{△ACD}×BO$
=$\frac{1}{3}×\frac{1}{2}×a×\frac{\sqrt{3}}{2}a×\frac{\sqrt{6}}{3}a$=$\frac{\sqrt{2}{a}^{3}}{12}$.
故選:D.
點評 本題考查三棱錐的體積的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=|x| | B. | y=x-2 | C. | y=ex-e-x | D. | y=-x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3或-3 | B. | 3或4 | C. | -3或-1 | D. | -1或4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{4π}{3}$ | D. | $\frac{16π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36π | B. | 28π | C. | 16π | D. | 12π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com