20.已知函數(shù)f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0).
(1)若x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),求a的值;
(2)若f(x)≥0在[0,+∞)上恒成立,求a的取值范圍;
(3)證明:${(\frac{2017}{2016})^{2017}}$>e(e為自然對(duì)數(shù)的底數(shù)).

分析 (1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于a的方程,解出即可;
(2)問題轉(zhuǎn)化為f(x)min≥0,根據(jù)函數(shù)的單調(diào)性,通過討論a的范圍求出a的具體范圍即可;
(3)不等式兩邊取對(duì)數(shù),得到ln(1+$\frac{1}{1+2016}$)-$\frac{1}{1+2016}$>0,結(jié)合函數(shù)的單調(diào)性證明即可.

解答 解:(1)∵f(x)=ln(1+x)-$\frac{ax}{x+1}$(a>0),
∴f′(x)=$\frac{x+1-a}{{(x+1)}^{2}}$,
∵x=1是函數(shù)f(x)的一個(gè)極值點(diǎn),
f′(1)=0即a=2;
(2)∵f(x)≥0在[0,+∞)上恒成立,∴f(x)min≥0,
當(dāng)0<a≤1時(shí),f′(x)≥0在[0,+∞)上恒成立,
即f(x)在[0,+∞)上為增函數(shù),
∴f(x)min=f(0)=0成立,即0<a≤1,
當(dāng)a>1時(shí),令f′(x)≥0,則x>a-1,
令f′(x)<0,則0≤x<a-1,
即f(x)在[0,a-1)上為減函數(shù),在(a-1,+∞)上為增函數(shù),
∴f(x)min=f(a-1)≥0,又f(0)=0>f(a-1),則矛盾.
綜上,a的取值范圍為(0,1].
(3)兩邊取自然對(duì)數(shù)得,2017×ln$\frac{2017}{2016}$>1?ln $\frac{2017}{2016}$>$\frac{1}{2017}$,
?ln$\frac{2017}{2016}$-$\frac{1}{2017}$>0?ln(1+$\frac{1}{2016}$)-$\frac{1}{1+2016}$>0,
由(2)知a=1時(shí),f(x)=ln(1+x)-$\frac{x}{x+1}$在[0,+∞)單調(diào)遞增,
又 $\frac{1}{1+2016}$>0,f(0)=0,
∴f( $\frac{1}{2016}$)=ln $\frac{1}{1+2016}$-$\frac{1}{1+2016}$>f(0)=0,
故${(\frac{2017}{2016})^{2017}}$>e成立.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知f1(x)=sin x+cos x,記f2(x)=f1′(x),f3(x)=f2′(x),…,fn(x)=fn-1′(x)(n∈N*,n≥2),則f1($\frac{π}{2}$)+f2($\frac{π}{2}$)+…+f2017($\frac{π}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在公路MN兩側(cè)分別有A1,A2,…,A7七個(gè)工廠,各工廠與公路MN(圖中粗線)之間有小公路連接.現(xiàn)在需要在公路MN上設(shè)置一個(gè)車站,選擇站址的標(biāo)準(zhǔn)是“使各工廠到車站的距離之和越小越好”.則下面結(jié)論中正確的是( 。
①車站的位置設(shè)在C點(diǎn)好于B點(diǎn);
②車站的位置設(shè)在B點(diǎn)與C點(diǎn)之間公路上任何一點(diǎn)效果一樣;
③車站位置的設(shè)置與各段小公路的長度無關(guān).
A.B.C.①③D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等比數(shù)列{an}中,a4a8=9,則a3+a9的取值范圍是(  )
A.[6,+∞)B.(-∞,-6]∪[6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,A,B,C三個(gè)開關(guān)控制著1,2,3,4號(hào)四盞燈.若開關(guān)A控制著2,3,4號(hào)燈(即按一下開關(guān)A,2,3,4號(hào)燈亮,再按一下開關(guān)A,2,3,4號(hào)燈熄滅),同樣,開關(guān)B控制著1,3,4號(hào)燈,開關(guān)C控制著1,2,4號(hào)燈.開始時(shí),四盞燈都亮著,那么下列說法正確的是( 。
A.只需要按開關(guān)A,C可以將四盞燈全部熄滅
B.只需要按開關(guān)B,C可以將四盞燈全部熄滅
C.按開關(guān)A,B,C可以將四盞燈全部熄滅
D.按開關(guān)A,B,C無法將四盞燈全部熄滅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某種樹苗成活的概率都為$\frac{9}{10}$,現(xiàn)種植了1000棵該樹苗,且每棵樹苗成活與否相互無影響,記未成活的棵數(shù)記為X,則X的方差為90.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-alnx.
(1)當(dāng)a=3,求f(x)的單調(diào)遞增區(qū)間;
(2)若函數(shù)g(x)=f(x)-9x在區(qū)間$[\frac{1}{2},2]$上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某個(gè)命題和正整數(shù)n有關(guān),如果當(dāng)n=k,k為正整數(shù)時(shí)命題成立,那么可推得當(dāng)n=k+1時(shí),命題也成立.現(xiàn)已知當(dāng)n=7時(shí)命題不成立,那么可以推得( 。
A.當(dāng)n=6時(shí)該命題不成立B.當(dāng)n=6時(shí)該命題成立
C.當(dāng)n=8時(shí)該命題不成立D.當(dāng)n=8時(shí)該命題成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在平面直角坐標(biāo)系xoy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=5cosθ}\\{y=4sinθ}\end{array}\right.$(θ為參數(shù)),則過點(diǎn)(3,0)且斜率為$\frac{4}{5}$的直線l被曲線C截得的線段中點(diǎn)的坐標(biāo)為( 。
A.(-$\frac{3}{2}$,-$\frac{18}{5}$)B.($\frac{4}{3}$,-$\frac{4}{3}$)C.(-2,-4)D.($\frac{3}{2}$,-$\frac{6}{5}$)

查看答案和解析>>

同步練習(xí)冊答案