17.在二項(xiàng)式(1-2x)9的展開式中,
(1)求展開式的第四項(xiàng);
(2)求展開式的常數(shù)項(xiàng);
(3)求展開式中各項(xiàng)的系數(shù)和.

分析 (1)利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式的第四項(xiàng).
(2)利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式的常數(shù)項(xiàng).
(3)在二項(xiàng)式(1-2x)9的展開式中,令x=1,可得展開式中各項(xiàng)的系數(shù)和.

解答 解:(1)在二項(xiàng)式(1-2x)9的展開式中,展開式的第四項(xiàng)為T4=${C}_{9}^{3}$•(-2x)3=-672x3
(2)由于二項(xiàng)式(1-2x)9的展開式的通項(xiàng)公式為Tr+1=${C}_{9}^{r}$•(-2x)r,令r=0,可得常數(shù)項(xiàng)為1.
(3)在二項(xiàng)式(1-2x)9的展開式中,令x=1,可得展開式中各項(xiàng)的系數(shù)和為-1.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,是給變量賦值的問題,關(guān)鍵是根據(jù)要求的結(jié)果,選擇合適的數(shù)值代入,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知單位向量$\vec a,\vec b$,若向量$2\vec a-\vec b$與$\vec b$垂直,則向量$\vec a$與$\vec b$的夾角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列$\sqrt{3}$,$\sqrt{7}$,$\sqrt{11}$,$\sqrt{15}$,…的一個(gè)通項(xiàng)公式是(  )
A.an=$\sqrt{4n+1}$B.an=$\sqrt{4n-1}$C.an=$\sqrt{2n+1}$D.an=$\sqrt{2n+3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若(1+2x)100=a0+a1(x-1)+a2(x-1)2+…+a100(x-1)100,則a1+a2+…+a100=5100-3100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.邊長(zhǎng)為2的正三角形ABC內(nèi)(包括三邊)有點(diǎn)P,$\overrightarrow{PB}$$•\overrightarrow{PC}$=1,則$\overrightarrow{AP}$•$\overrightarrow{AB}$的范圍是( 。
A.[2,4]B.[$\frac{3-\sqrt{5}}{2}$,4]C.[3-$\sqrt{5}$,2]D.[$\frac{3-\sqrt{5}}{2}$,3-$\sqrt{5}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓C:(x-2)2+(y-3)2=16及直線l:(m+2)x+(3m+1)y=15m+10(m∈R).
(1)證明:不論m取什么實(shí)數(shù),直線l與圓C恒相交;
(2)當(dāng)直線l被圓C截得的弦長(zhǎng)的最短時(shí),求此時(shí)直線l方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知曲線y=axcosx在$({\frac{π}{2},0})$處的切線的斜率為$\frac{1}{2}$,則實(shí)數(shù)a的值為( 。
A.$\frac{π}{2}$B.-$\frac{π}{2}$C.$\frac{1}{π}$D.$-\frac{1}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若$a=1,b=\sqrt{3},C={30^0}$,則c=1,△ABC的面積S=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.為了回饋顧客,某商場(chǎng)在元旦期間舉行購(gòu)物抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為$\frac{3}{5}$,中獎(jiǎng)可以獲得3分;方案乙的中獎(jiǎng)率為$\frac{3}{4}$,中獎(jiǎng)可以獲得2分;未中獎(jiǎng)則不得分,每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,抽獎(jiǎng)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品.
(1)若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為X,求X≥3的概率;
(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),分別求兩種方案下小明、小紅累計(jì)得分的分布列,并指出為了累計(jì)得分較大,兩種方案下他們選擇何種方案較好,并給出理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案