9.定義在R上的偶函數(shù)y=f(x),對任意的x∈R,都有f(x+6)=f(x)+f(3),且函數(shù)f(x)在[0,3]上為減函數(shù),則下列結(jié)論中錯誤的是(  )
A.f(x)≥0
B.f(1)>f(14)
C.y=f(x)的解析式可能為y=2cos2$\frac{π}{6}$x
D.若x2+y2=9與y=f(x)有且僅有三個交點,則在[0,3]上將y=f(x)的圖象沿y軸旋轉(zhuǎn)一周得到的幾何體的體積為9π

分析 根據(jù)抽象函數(shù)關(guān)系結(jié)合函數(shù)奇偶性的性質(zhì)求出f(3)=0,從而得到函數(shù)的周期是6,結(jié)合三角函數(shù)的周期性分別進(jìn)行判斷即可.

解答 解:∵f(x+6)=f(x)+f(3),
∴f(-3+6)=f(-3)+f(3),
∴f(-3)=0,函數(shù)f(x)是偶函數(shù),
∴f(3)=0.
∴f(x+6)=f(x)+0=f(x),
∴f(x)是以6為周期的函數(shù),
∵函數(shù)f(x)在[0,3]上為減函數(shù),∴函數(shù)f(x)在[-3,0]上為增函數(shù),
∵f(3)=0.∴當(dāng)0≤x≤3時,f(x)≥0,
綜上恒有f(x)≥0,故A正確,
B.f(14)=f(12+2)=f(2),
∵函數(shù)f(x)在[0,3]上為減函數(shù),∴f(1)>f(2),
即f(1)>f(14),故B正確,
C.f(x)=2cos2$\frac{πx}{6}$=1+cos$\frac{πx}{3}$,則函數(shù)的周期是T=$\frac{2π}{\frac{1}{3}π}$=6,
f(3)=1+cosπ=1-1=0,當(dāng)0≤x≤3時,0≤$\frac{πx}{3}$≤π,函數(shù)f(x)為減函數(shù),滿足條件.故C正確,
D.若x2+y2=9與y=f(x)有且僅有三個交點,則f(0)=3,
且f(x)在圓的內(nèi)部,在[0,3]上將y=f(x)的圖象沿y軸旋轉(zhuǎn)一周得到的幾何體不確定,無法求出對應(yīng)的條件,故D錯誤,
故選:D

點評 本題主要考查命題的真假判斷,涉及抽象函數(shù)的應(yīng)用,利用賦值法判斷函數(shù)的周期性是解決本題的關(guān)鍵.綜合性較強(qiáng),有一定的難度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.正態(tài)總體N(1,9)在區(qū)間(2,3)和(-1,0)上取值的概率分別為m,n,則m=n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.為了做好“雙11”促銷活動,某電商打算將進(jìn)行促銷活動的禮品重新包裝,設(shè)計方案如下:將一塊邊長為20cm的正方形紙片ABCD剪去四個全等的等腰三角形△SEE′,△SFF′,△SGG′,△SHH′,再將剩下的陰影部分折成一個四棱錐形狀的禮品袋S-EFGH,其中A,B,C,D重合于點O,E與E′重合,F(xiàn)與F′重合,G與G′重合,H與H′重合(如圖所示),設(shè)AE=BE′=x(cm).
(1)求證:平面SEG⊥平面SFH;
(2)若電商要求禮品袋的側(cè)面積不少于128cm2,試求x的取值范圍;
(3)當(dāng)x=5時,該電商打算將禮品袋S-EFGH全部放入一個球形狀的包裝盒內(nèi)密封,求包裝盒的內(nèi)徑R的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sin2x+2sin2x.
(1)求函數(shù)y=f(x)的最小正周期及單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是二次函數(shù),且f(0)=-1,f(x+1)=f(x)-2x+2,則f(x)的表達(dá)式為f(x)=-x2+3x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.經(jīng)過兩點A(2,1),B(1,m2)的直線l的傾斜角為銳角,則m的取值范圍是( 。
A.m<1B.m>-1C.-1<m<1D.m>1或m<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,其中俯視圖為扇形,則該幾何體的表面積為( 。
A.$\frac{4\sqrt{5}π+4π}{3}$B.$\frac{2\sqrt{5}π+4π}{3}$C.$\frac{12+4\sqrt{5}π+4π}{3}$D.$\frac{24+4\sqrt{5}π+4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知全集U={1,2,3,5},M={1,3,5},N={2,3},則集合(∁UN)∩M等于( 。
A.{2}B.{1,3}C.{1,5}D.{2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)Sn為數(shù)列{an}的前n項和,已知a1≠0,2an-a1=S1•Sn(n∈N*).
(1)試求a1之值,并確定數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{(lo{g}_{2}{a}_{n+1})•(lo{g}_{2}{a}_{n+2})}$,n∈N*,試求{bn}前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案