分析 由已知利用二倍角的正弦函數(shù)公式,正弦定理可求cosC,利用二倍角的余弦函數(shù)公式可求cosB=cos2C的值,利用同角三角函數(shù)基本關(guān)系式可求sinC的值,由余弦定理可得BC2-6BC-55=0,解得BC,可求DC的值,進(jìn)而利用三角形面積公式即可計(jì)算得解.
解答 解:∵b=4$\sqrt{5}$,c=5,B=2C,
∴由正弦定理可得:$\frac{5}{sinC}$=$\frac{4\sqrt{5}}{sinB}$=$\frac{4\sqrt{5}}{2sinCcosC}$,可得:cosC=$\frac{2\sqrt{5}}{5}$,
∴cosB=cos2C=2cos2C-1=$\frac{3}{5}$,sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{\sqrt{5}}{5}$,
∴在△ABC中,由余弦定理可得:(4$\sqrt{5}$)2=52+BC2-2×$5×BC×\frac{3}{5}$,
整理可得:BC2-6BC-55=0,解得:BC=11或-5(舍去),
∴DC=BC-BD=11-6=5,
∴S△ADC=$\frac{1}{2}$AC•DC•sinC=$\frac{1}{2}×4\sqrt{5}×5×\frac{\sqrt{5}}{5}$=10.
故答案為:10.
點(diǎn)評(píng) 本題主要考查了二倍角的正弦函數(shù)公式,正弦定理,二倍角的余弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分非必要 | B. | 必要非充分 | ||
C. | 充要 | D. | 既不充分又不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com