【題目】如圖,邊長(zhǎng)為的正方形ADEF與梯形ABCD所在的平面互相垂直,其中AB∥CD,AB⊥BC,DC=BC=AB=1,點(diǎn)M在線段EC上.
(Ⅰ)證明:平面BDM⊥平面ADEF;
(Ⅱ)判斷點(diǎn)M的位置,使得三棱錐B﹣CDM的體積為 .
【答案】(Ⅰ)見解析;(Ⅱ)點(diǎn)M在線段CE的三等分點(diǎn)且靠近C處.
【解析】試題分析:
(Ⅰ)由題意結(jié)合勾股定理可得AD⊥BD,由面面垂直的性質(zhì)可得BD⊥ED,據(jù)此可得BD⊥平面ADEF,故平面BDM⊥平面ADEF;
(Ⅱ)在平面DMC內(nèi),過M作MN⊥DC,垂足為N,轉(zhuǎn)換頂點(diǎn),VB﹣CDM=VM﹣CDB,據(jù)此可得,利用相似三角形的性質(zhì)可得,即點(diǎn)M在線段CE的三等分點(diǎn)且靠近C處.
試題解析:
(Ⅰ)∵DC=BC=1,DC⊥BC,
∴BD=,
∵AD=,AB=2,
∴AD2+BD2=AB2 ,
∴∠ADB=90°,
∴AD⊥BD,
∵平面ADEF⊥平面ABCD,ED⊥AD,平面ADEF∩平面ABCD=AD,
∴ED⊥平面ABCD,
∴BD⊥ED,
∵AD∩DE=D,
∴BD⊥平面ADEF,
∵BD平面BDM,
∴平面BDM⊥平面ADEF;
(Ⅱ)如圖,在平面DMC內(nèi),過M作MN⊥DC,垂足為N,則MN∥ED,
∵ED⊥平面ABCD,
∴MN⊥平面ABCD,
∵VB﹣CDM=VM﹣CDB=,
∴××1×1×MN=,
∴MN=,
∴=,
∴CM=CE,
∴點(diǎn)M在線段CE的三等分點(diǎn)且靠近C處.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校夏令營(yíng)有3名男同學(xué)和3名女同學(xué),其年級(jí)情況如下表,現(xiàn)從這6名同學(xué)中隨機(jī)選出2人參加知識(shí)競(jìng)賽(每人被選到的可能性相同).
一年級(jí) | 二年級(jí) | 三年級(jí) | |
男同學(xué) | |||
女同學(xué) |
(1)用表中字母列舉出所有可能的結(jié)果;
(2)設(shè)為事件“選出的2人來自不同年級(jí)且恰有1名男同學(xué)和1名女同學(xué)”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地小吃“全羊湯”2008年被中國(guó)中醫(yī)學(xué)會(huì)營(yíng)養(yǎng)膳食協(xié)會(huì)評(píng)為“中華名吃”,2010年12月被納入市級(jí)非物質(zhì)文化遺產(chǎn)名錄,打造地方名片.當(dāng)初向各地作廣告推廣,對(duì)銷售收益產(chǎn)生額積極的影響.某年度在若干地區(qū)各投入4萬元廣告費(fèi)用后,將各地該年度的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從0開始計(jì)數(shù)的.
(1)根據(jù)頻率分布直方圖,計(jì)算圖中各小長(zhǎng)方形的寬度;
(2)根據(jù)頻率分布直方圖,估計(jì)投入4萬元廣告費(fèi)用之后,銷售收益的平均值;(以各組區(qū)間中點(diǎn)值代表改組的取值)
(3)又在某一地區(qū)測(cè)的另外一些數(shù)據(jù),并整理的得到下表:
廣告投入(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益(單位:百萬元) | 2 | 3 | 2 | 7 |
請(qǐng)將(2)的結(jié)果填入空白欄,表中的數(shù)據(jù)之間存在線性相關(guān)關(guān)系.計(jì)算,并預(yù)測(cè)年度廣告約投入多少萬元時(shí),年銷售收益達(dá)到千萬元?(結(jié)果精確達(dá)到0.1)
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小萌大學(xué)畢業(yè)后,家里給了她10萬元,她想辦一個(gè)“萌萌”加工廠,根據(jù)市場(chǎng)調(diào)研,她得出了一組毛利潤(rùn)(單位:萬元)與投入成本(單位:萬元)的數(shù)據(jù)如下:
投入成本 | 0.5 | 1 | 2 | 3 | 4 | 5 | 6 |
毛利潤(rùn) | 1.06 | 1.25 | 2 | 3.25 | 5 | 7.25 | 9.98 |
為了預(yù)測(cè)不同投入成本情況下的利潤(rùn),她想在兩個(gè)模型,中選一個(gè)進(jìn)行預(yù)測(cè).
(1)根據(jù)投入成本2萬元和4萬元的兩組數(shù)據(jù)分別求出兩個(gè)模型的函數(shù)解析式,請(qǐng)你根據(jù)給定數(shù)據(jù)選出一個(gè)較好的函數(shù)模型進(jìn)行預(yù)測(cè)(不必說明理由),并預(yù)測(cè)她投入8萬元時(shí)的毛利潤(rùn);
(2)若小萌準(zhǔn)備最少投入2萬元開辦加工廠,請(qǐng)預(yù)測(cè)加工廠毛利潤(rùn)率的最大值,并說明理由.()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“海之旅”表演隊(duì)在一海濱區(qū)域進(jìn)行集訓(xùn),該海濱區(qū)域的海浪高度(米)隨著時(shí)刻而周期性變化.為了了解變化規(guī)律,該團(tuán)隊(duì)觀察若干天后,得到每天各時(shí)刻的浪高數(shù)據(jù)的平均值如下表:
0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | |
1.0 | 1.4 | 1.0 | 0.6 | 1.0 | 1.4 | 0.9 | 0.6 | 1.0 |
(1)從中選擇一個(gè)合適的函數(shù)模型,并求出函數(shù)解析式;
(2)如果確定當(dāng)浪高不低于0.8米時(shí)才進(jìn)行訓(xùn)練,試安排白天內(nèi)恰當(dāng)?shù)挠?xùn)練時(shí)間段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),作AC,BD垂直拋物線的準(zhǔn)線l于C,D,其中O為坐標(biāo)原點(diǎn),則下列結(jié)論正確的是 . (填序號(hào))
① ;
②存在λ∈R,使得 成立;
③ =0;
④準(zhǔn)線l上任意一點(diǎn)M,都使得 >0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣mx(m∈R).
(1)當(dāng)m=0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(2)當(dāng)m≥0時(shí),求證:函數(shù)f(x)有且只有一個(gè)極值點(diǎn);
(3)當(dāng)b>a>0時(shí),總有 >1成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:如果函數(shù)在定義域內(nèi)給定區(qū)間上存在,滿足 ,則稱函數(shù)是上的“平均值函數(shù)”,是它的均值點(diǎn).
(1)是否是上的“平均值函數(shù)”,如果是請(qǐng)找出它的均值點(diǎn);如果不是,請(qǐng)說明理由;
(2)現(xiàn)有函數(shù)是上的平均值函數(shù),則求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com