9.已知函數(shù)$f(x)=\frac{lnx}{x}$,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e).

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的遞增區(qū)間即可.

解答 解:f(x)的定義域是(0,+∞),
f′(x)=$\frac{1-lnx}{{x}^{2}}$,
令f′(x)>0,即lnx<1,解得:0<x<e,
故f(x)在(0,e)遞增,
故答案為:(0,e).

點評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在銳角△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,$\sqrt{3}a=2csinA$
(1)求角C
(2)若△ABC的面積等于$\sqrt{3}$,求a,b; 
(3)求△ABC的面積最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=4cosθ,曲線M的直角坐標方程為x-2y+2=0(x>0)
(1)以曲線M上的點與點O連線的斜率k為參數(shù),寫出曲線M的參數(shù)方程;
(2)設(shè)曲線C與曲線M的兩個交點為A,B,求直線OA與直線OB的斜率之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知下列命題:
①命題“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x“
②已知p,q為兩個命題,若“p∨q”為假命題“(¬p)∧(¬q)”為真命題;
③“a>2”是“a>5”的充分不必要條件;
④“若xy=0,則x=0且y=0”的逆否命題為真命題.
其中所有真命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)計算正確的是( 。
A.($\frac{lnx}{x}$)′=$\frac{lnx-1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$C.(2x)′=2x$\frac{1}{ln2}$D.(xsinx)′=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知樣本數(shù)據(jù)1,2,4,3,5,下列說法不正確的是( 。
A.平均數(shù)是3B.中位數(shù)是4C.極差是4D.方差是2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)銳角△ABC中,角A,B,C的對邊分別為a,b,c,且$\frac{2}$是2asinAcosC與csin2A的等差中項.
(Ⅰ)求角A的大;
(Ⅱ)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將5位老師分別安排到高二的三個不同的班級任教,則每個班至少安排一人的不同方法數(shù)為150.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若三次函數(shù)$f(x)=\frac{1}{3}{x^3}-(4m-1){x^2}+(15{m^2}-2m-7)x+2$在x∈R上是增函數(shù),則m的取值范圍是(  )
A.m≤2或m≥4B.2<m<4C.2≤m≤4D.m<2或m<4

查看答案和解析>>

同步練習(xí)冊答案