19.在銳角△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,$\sqrt{3}a=2csinA$
(1)求角C
(2)若△ABC的面積等于$\sqrt{3}$,求a,b; 
(3)求△ABC的面積最大值.

分析 (1)由已知及正弦定理可得$\sqrt{3}sinA=2sinCsinA$,結(jié)合sinA≠0,可得sinC=$\frac{\sqrt{3}}{2}$,由于△ABC為銳角三角形,可求C=$\frac{π}{3}$.
(2)由余弦定理及已知條件,得a2+b2-ab=4,又$\frac{1}{2}$absinC=$\sqrt{3}$,得ab=4.聯(lián)立即可解得a,b的值.
(3)由①可得:4+ab≥2ab,即ab≤4(當(dāng)且僅當(dāng)a=b=2時等號成立),利用三角形面積公式即可計(jì)算得解.

解答 (本題滿分為12分)
解:(1)∵$\sqrt{3}a=2csinA$,
∴$\sqrt{3}sinA=2sinCsinA$,…2分
∵A∈(0,π),
∴sinA≠0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵△ABC為銳角三角形,
∴C=$\frac{π}{3}$.…(6分)
(2)∵C=$\frac{π}{3}$,c=2,由余弦定理及已知條件,得a2+b2-ab=4,①…(7分)
又因?yàn)椤鰽BC的面積等于$\sqrt{3}$,
所以$\frac{1}{2}$absinC=$\sqrt{3}$,得ab=4.②…(8分)
聯(lián)立①②,解得$\left\{\begin{array}{l}{a=2}\\{b=2}\end{array}\right.$,…(11分)
(3)由①可得:4+ab≥2ab,即ab≤4(當(dāng)且僅當(dāng)a=b=2時等號成立),
∴S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,即當(dāng)a=b=2時,△ABC的面積的最大值等于$\sqrt{3}$,…(12分)

點(diǎn)評 本題主要考查了正弦定理,余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則函數(shù)的解析式為y=$\sqrt{2}$sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,曲線C1:$\left\{\begin{array}{l}{x=-2+cosα}\\{y=-1+sinα}\end{array}\right.$(α是參數(shù)).在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2:ρcosθ-3=0.點(diǎn)P是曲線C1上的動點(diǎn).
(1)求點(diǎn)P到曲線C2的距離的最大值;
(2)若曲線C3:θ=$\frac{π}{4}$交曲線C1于A,B兩點(diǎn),求△ABC1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=kx+1在區(qū)間(-1,1)上存在零點(diǎn),則實(shí)數(shù)k的取值范圍是( 。
A.-1<k<1B.k>1C.k<-1D.k<-1或k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列推導(dǎo)不正確的是(  )
A.a>b⇒c-a<c-bB.$\frac{c}{a}>\frac{c},c>0⇒a<b$C.$a>b>0,c>d⇒\sqrt{\frac{a}32kjbu8}>\sqrt{\frac{c}}$D.$\root{n}{a}<\root{n}(n∈{N^*})⇒a<b$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知拋物線C:y2=2px(p>0),圓M:(x-2)2+y2=4,圓心M到拋物線準(zhǔn)線的距離為3,點(diǎn)P(x0,y0)(x0≥5)是拋物線在第一象限上的點(diǎn),過點(diǎn)P作圓M的兩條切線,分別與x軸交于A,B兩點(diǎn).
(1)求拋物線C的方程;
(2)求△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.高斯是德國著名的數(shù)學(xué)家,享有“數(shù)學(xué)王子”之稱,以他的名字“高斯”命名的成果達(dá)110個,設(shè)x∈R,用[x]表示不超過x的最大整數(shù),并用{x}=x-[x]表示x的非負(fù)純小數(shù),則y=[x]稱為高斯函數(shù),已知數(shù)列{an}滿足:${a_1}=\sqrt{3},{a_{n+1}}=[{a_n}]+\frac{1}{{\left\{{a_n}\right\}}},(n∈{N^*})$,則a2017=$3024+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)y=3sinx+$\sqrt{3}$cosx,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]的值域(  )
A..[-3,3]B.[-2$\sqrt{3}$,2$\sqrt{3}$]C.[0,2$\sqrt{3}$]D.[-$\frac{1}{2}$,2$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)$f(x)=\frac{lnx}{x}$,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,e).

查看答案和解析>>

同步練習(xí)冊答案