分析 利用兩角和差的正弦公式化簡函數(shù)的解析式,再利用正弦函數(shù)的最小正周期以及單調性得出結論.
解答 解:∵函數(shù)$f(x)=\sqrt{3}sinxcosx-{sin^2}x$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1-cos2x}{2}$=sin(2x+$\frac{π}{6}$)-$\frac{1}{2}$,
∴函數(shù)的最小正周期為$\frac{2π}{2}$=π,令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,
故函數(shù)的減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
故答案為:π;[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈Z.
點評 本題主要考查兩角和差的正弦公式的應用,求正弦函數(shù)的最小正周期以及單調性,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為2π | |
B. | 函數(shù)f(x)的圖象關于點(-$\frac{5π}{12}$.0)對稱 | |
C. | 將函數(shù)f(x)的圖象向左平移$\frac{x}{6}$個單位得到的函數(shù)圖象關于y軸對稱 | |
D. | 函數(shù)f(x)的單調遞增區(qū)間是[kx+$\frac{7π}{12}$,kπ+$\frac{13π}{12}$],(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{15}$ | C. | $\frac{{\sqrt{15}}}{5}$ | D. | $\frac{{\sqrt{15}}}{15}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com