9.雙曲線(xiàn)$\frac{{x}^{2}}{3}$-y2=1的漸近線(xiàn)方程為( 。
A.y=±3xB.y=±$\frac{1}{3}$xC.y=±$\sqrt{3}$xD.y=±$\frac{\sqrt{3}}{3}$x

分析 將雙曲線(xiàn)的方程的右邊的“1”換為“0”可得雙曲線(xiàn)$\frac{{x}^{2}}{3}$-y2=1的漸近線(xiàn)方程為$\frac{{x}^{2}}{3}$-y2=0,整理后就得到雙曲線(xiàn)的漸近線(xiàn)方程.

解答 解:∵雙曲線(xiàn)的方程為$\frac{{x}^{2}}{3}$-y2=1,
∴將右邊的“1”換為“0”可得:
雙曲線(xiàn)$\frac{{x}^{2}}{3}$-y2=1的漸近線(xiàn)方程為$\frac{{x}^{2}}{3}$-y2=0,即y=±$\frac{\sqrt{3}}{3}$x.
故選:D.

點(diǎn)評(píng) 本題考查雙曲線(xiàn)的標(biāo)準(zhǔn)方程,以及雙曲線(xiàn)的簡(jiǎn)單性質(zhì)的應(yīng)用,令標(biāo)準(zhǔn)方程中的“1”為“0”即可求出漸近線(xiàn)方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在區(qū)間[-3,3]內(nèi)隨機(jī)取出一個(gè)數(shù)a,使得1∈{x|2x2+ax-a2>0}的概率為(  )
A.$\frac{3}{10}$B.$\frac{2}{3}$C.$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$a={2^x},b={4^{\frac{2}{3}}}$,則log2b=$\frac{4}{3}$,滿(mǎn)足logab≤1的實(shí)數(shù)x的取值范圍是$({-∞,0})∪[{\frac{4}{3},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=ln(ax+1)-ax-lna.
(1)討論f(x)的單調(diào)性;
(2)若h(x)=ax-f(x),當(dāng)h(x)>0恒成立時(shí),求a的取值范圍;
(3)若存在$-\frac{1}{a}<{x_1}<0$,x2>0,使得f(x1)=f(x2)=0,判斷x1+x2與0的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.命題p:“?x0∈R“,x02-1≤0的否定¬p為( 。
A.?x∈R,x2-1≤0B.?x∈R,x2-1>0C.?x0∈R,x02-1>0D.?x0∈R,x02-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知一個(gè)幾何體的三視圖如圖所示,其中俯視圖為半圓面,則該幾何體的體積為(  )
A.B.C.πD.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.平行于直線(xiàn)l:x+2y-3=0,且與l的距離為2$\sqrt{5}$的直線(xiàn)的方程為( 。
A.x+2y+7=0B.x+2y-13=0或x+2y+7=0
C.x+2y+13=0D.x+2y+13=0或x+2y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=a+(a-2)i(a∈R,i是虛數(shù)單位)為實(shí)數(shù),則$\int_0^a{\sqrt{4-{x^2}}dx}$的值是( 。
A.2+πB.$2+\frac{π}{2}$C.πD.4+4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.設(shè)F為拋物線(xiàn)C:y2=8x,曲線(xiàn)y=$\frac{k}{x}$(k>0)與C交于點(diǎn)A,直線(xiàn)FA恰與曲線(xiàn)y=$\frac{k}{x}$(k>0)相切于點(diǎn)A,直線(xiàn)FA于C的準(zhǔn)線(xiàn)交于點(diǎn)B,則$\frac{|FA|}{|BA|}$等于( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案