求下列函數(shù)的值域:
(1)y=
1
x+1
+1
;
(2)y=
x2
x2+1
(x∈R);
(3)y=
x2+4x+10
+5.
考點(diǎn):函數(shù)的值域
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)觀察法求函數(shù)y=
1
x+1
+1
的值域;
(2)分離常數(shù)法求函數(shù)y=
x2
x2+1
(x∈R)的值域;
(3)配方法求函數(shù)y=
x2+4x+10
+5的值域.
解答: 解:(1)∵
x+1
≥0,
∴0<
1
x+1
+1
≤1,
故y=
1
x+1
+1
的值域?yàn)椋?,1];
(2)y=
x2
x2+1
=1-
1
x2+1
,
∵0<
1
x2+1
≤1,
∴0≤1-
1
x2+1
<1,
故y=
x2
x2+1
的值域?yàn)閇0,1);
(3)y=
x2+4x+10
+5
=
(x+2)2+6
+5≥5+
6
點(diǎn)評(píng):本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若動(dòng)點(diǎn)(x,y)在橢圓
x2
4
+
y2
2
=1上運(yùn)動(dòng),則x2+2y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù):
(1)y=ln
3ex+2
;
(2)y=(2x3-x+
1
x
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x2+ax+2,曲線y=f(x)在(0,2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為-2,
(1)求a;
(2)若y=f(x)與直線y=kx-2只有一個(gè)交點(diǎn),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
4
<α<π,tanα+
1
tanα
=-
10
3

(1)求tanα的值;
(2)求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
4
)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

到A(2,-3)和直線y=4距離相等的點(diǎn)的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三個(gè)數(shù)50.6,0.65,log0.65的大小順序是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-x2)(x2+ax+b)(x∈R),若f(x-1)是偶函數(shù),則f(x)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x和g(x)=x3的圖象的示意圖如下圖所示.設(shè)兩個(gè)函數(shù)的圖象交于點(diǎn)A(x1,y1),B,2,y2)且x1<x2
(1)若x1∈[a,a+1],x2∈[b,b+1],且a,b∈{1,2,3,4,5,6,7,8,910,11,12},指出a,b的值,并說(shuō)明理由;
(2)結(jié)合函數(shù)圖象示意圖,請(qǐng)把f(6),g(6),f(2007),g(2007)四個(gè)數(shù)按從小到大的順序排列.

查看答案和解析>>

同步練習(xí)冊(cè)答案