設(shè)數(shù)列滿足
(1)求數(shù)列的通項(xiàng);
(2)設(shè),求數(shù)列的前項(xiàng)和

(1)(2)

解析試題分析:(1)由所給等式寫出當(dāng)時的情況,兩式作差可得數(shù)列的通項(xiàng);(2)結(jié)合(1)可得的通項(xiàng)公式,用錯位相減法可得前和公式.
試題解析:
解:(1)           ①
       ②
②-①得      ∴
由①得,經(jīng)驗(yàn)證也滿足上式,   ∴.            6分
(2)
            ③
          ④
③-④得:,
.                        14分
考點(diǎn):數(shù)列的通項(xiàng)公式,錯位減法求前n項(xiàng)和公式,等比數(shù)列的前n 項(xiàng)和公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:,其中.
(1)求證:數(shù)列是等比數(shù)列;
(2)令,求數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和和通項(xiàng)滿足。
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),等比數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)為,且前n項(xiàng)和滿足
(1)求數(shù)列的通項(xiàng)公式:
(2)若數(shù)列前n項(xiàng)和為,問使的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•湖北)已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=﹣18.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得Sn≥2013?若存在,求出符合條件的所有n的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè) 數(shù)列滿足: 
(1)求證:數(shù)列是等比數(shù)列(要指出首項(xiàng)與公比);
(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇。調(diào)查表明,凡是在這星期一選A菜的,下星期一會有改選B菜;而選B菜的,下星期一會有改選A菜。用分別表示第個星期選A的人數(shù)和選B的人數(shù).
⑴試用表示,判斷數(shù)列是否成等比數(shù)列并說明理由;
⑵若第一個星期一選A神菜的有200人,那么第10個星期一選A種菜的大約有多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在數(shù)列中,已知.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}的首項(xiàng)a1=2,Sn為其前n項(xiàng)和,若5S1,S3,3S2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log2an,cn,記數(shù)列{cn}的前n項(xiàng)和Tn.若對?n∈N*,Tn≤k(n+4)恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案