11.求函數(shù)$f(x)={log_2}(2sinx-1)+\sqrt{\sqrt{2}+2cosx}$的定義域.

分析 根據(jù)對數(shù)函數(shù)以及三角函數(shù)的性質(zhì)得到關(guān)于x的不等式組,解出即可.

解答 解:由題意,得$\left\{\begin{array}{l}2sinx-1>0\\ \sqrt{2}+2cosx≥0\end{array}\right.$,
即$\left\{\begin{array}{l}\frac{π}{6}+2kπ<x<\frac{5π}{6}+2kπ,k∈Z\\-\frac{3π}{4}+2kπ≤x≤\frac{3π}{4}+2kπ,k∈Z\end{array}\right.$,
所以,函數(shù)f(x)的定義域是$\{x\left|{\frac{π}{6}+2kπ<x≤\frac{3π}{4}+2kπ,k∈Z}\right.\}$.

點(diǎn)評 本題考查了求函數(shù)的定義域問題,考查對數(shù)函數(shù)以及三角函數(shù)的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.己知圖1中,四邊形ABCD是等腰梯形,AB∥CD,EF∥CD,O、Q分別為線段AB,CD的中點(diǎn),OQ與EF的交點(diǎn)為P,OP=1,PQ=2,現(xiàn)將梯形ABCD沿EF折起,使得OQ=$\sqrt{3}$,連結(jié)AD,BC,得一幾何體如圖2示.

(I)證明:平面ABCD⊥平面ABFE;
(II)若圖1中.∠A=45°,CD=2,求平面ADE與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知菱形ABCD的中心為O,∠BAD=$\frac{π}{3}$,AB=1,則($\overrightarrow{OA}$-$\overrightarrow{OB}$)•($\overrightarrow{AD}$+$\overrightarrow{AB}$)等于-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬元)的幾組對照數(shù)據(jù):
x(年)  3       4     5   6
y(萬元)    2.5    3    4  4.5 
(1)若知道y對x呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=bx+a
(2)已知工廠技改前該型號設(shè)備使用10年的維修費(fèi)用為9萬元.試根據(jù)(1)求出的線性回歸方程,預(yù)測該型號設(shè)備技改后使用10年的維修費(fèi)用比技改前降低多少?
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=y-$\stackrel{∧}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z滿足(3+4i)z=25,則z對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l:(2k+1)x+(k-1)y-(4k-1)=0(k∈R)與圓C:x2+y2-4x-2y+1=0交于A,B兩點(diǎn).
(1)求|AB|最小時(shí)直線l的方程,并求此時(shí)|AB|的值;
(2)求過點(diǎn)P(4,4)的圓C的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一盒中裝有除顏色外其余均相同的12個小球,從中隨機(jī)取出1個球,取出紅球的概率為$\frac{5}{12}$,取出黑球的概率為$\frac{1}{3}$,取出白球的概率為$\frac{1}{6}$,取出綠球的概率為$\frac{1}{12}$.求:
(1)取出的1個球是紅球或黑球的概率;
(2)取出的1個球是紅球或黑球或白球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知Rt△ABC,點(diǎn)D為斜邊BC的中點(diǎn),|$\overrightarrow{AB}$|=6$\sqrt{3}$,|$\overrightarrow{AC}$|=6,$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{ED}$,則$\overrightarrow{AE}$•$\overrightarrow{EB}$等于( 。
A.-14B.-9C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列各函數(shù)的導(dǎo)數(shù)
(1)$y=4x+\frac{1}{x}$
(2)y=exsinx
(3)$y=\frac{lnx}{x}$
(4)y=cos(2x+5)

查看答案和解析>>

同步練習(xí)冊答案