5.經(jīng)過圓x2+2x+y2=0的圓心,且與直線x+y-2=0垂直的直線方程是x-y+1=0.

分析 化圓的方程為標準方程,求出圓心坐標,再由已知可得所求直線的斜率,代入直線方程的點斜式得答案.

解答 解:化圓x2+2x+y2=0為標準方程(x+1)2+y2=1,
可得圓心坐標為(-1,0).
∵直線x+y-2=0的斜率為-1,
∴與直線x+y-2=0垂直的直線的斜率為1.
則所求直線方程為y-0=1×(x+1),即x-y+1=0.
故答案為:x-y+1=0.

點評 本題考查直線與圓的位置關(guān)系的應用,考查兩直線垂直與斜率的關(guān)系,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠ABC=90°,四邊形ABCD是平行四邊形,且PA=AD=2,AB=1,E是線段PD的中點.
( 1 ) 求證:AE⊥PC;
(2)是否存在正實數(shù)λ,滿足$\overrightarrow{PM}=λ\overrightarrow{MC}$,使得二面角M-BD-C的大小為600?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設(shè)等差數(shù)列{an}的前n項和為Sn,$\overrightarrow{a}$=(a1,1),$\overrightarrow$=(1,a10),若$\overrightarrow{a}$•$\overrightarrow$=20,且S11=121,bn=$\frac{1}{{a}_{n}{a}_{n+1}}$+$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$,則數(shù)列{bn}的前40項和為( 。
A.$\frac{72.8}{81}$B.$\frac{182}{81}$C.$\frac{364}{81}$D.$\frac{91}{81}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知f(x)=lnx-ax+$\frac{1-a}{x}$-1(a∈R).
(Ⅰ)當a=-1時,求曲線y=f(x)在(2,f(2))處的切線方程;
(Ⅱ)當0≤a≤$\frac{1}{2}$時,試討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,D為BC上靠近B點的三等分點,連接AD,若$\overrightarrow{AD}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,則m+n=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,P(x0,y0)是橢圓$\frac{{x}^{2}}{3}$+y2=1的上的點,l是橢圓在點P處的切線,O是坐標原點,OQ∥l與橢圓的一個交點是Q,P,Q都在x軸上方
(1)當P點坐標為($\frac{3}{2}$,$\frac{1}{2}$)時,利用題后定理寫出l的方程,并驗證l確定是橢圓的切線;
(2)當點P在第一象限運動時(可以直接應用定理)
①求△OPQ的面積
②求直線PQ在y軸上的截距的取值范圍.
定理:若點(x0,y0)在橢圓$\frac{{x}^{2}}{3}$+y2=1上,則橢圓在該點處的切線方程為$\frac{{x}_{0}x}{3}$+y0y=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱臺ABCD-A1B1C1D1中,底面ABCD為平行四邊形,∠BAD=120°,M為CD上的點.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求證:AM⊥A1B;
(2)若M為CD的中點,N為棱DD1上的點,且MN與平面A1BD所成角的正弦值為$\frac{1}{{\sqrt{35}}}$,試求DN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設(shè)A(0,1),B(1,3),C(-1,5),D(0,-1),則$\overrightarrow{AB}+\overrightarrow{AC}$等于( 。
A.-2$\overrightarrow{AD}$B.2$\overrightarrow{AD}$C.-3$\overrightarrow{AD}$D.3$\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.設(shè)函數(shù)f(x)=(x-a)|x-a|-x|x|+2a+1(a<0,)若存在x0∈[-1,1],使f(x0)≤0,則a的取值范圍為[-3,-2+$\sqrt{2}$].

查看答案和解析>>

同步練習冊答案