分析 (1)根據(jù)平面向量共線定理,列出方程,利用三角恒等變換求出角A的值;
(2)由余弦定理和基本不等式求出△ABC面積S的最大值,并判斷S取最大值時(shí)△ABC是等邊三角形.
解答 解:(1)向量$\overrightarrow{m}$=(sinA,$\frac{1}{2}$)與向量$\overrightarrow{n}$=(3,sinA+$\sqrt{3}$cosA)共線,
∴sinA•(sinA+$\sqrt{3}$cosA)-$\frac{3}{2}$=0,…2分
∴$\frac{1-cos2A}{2}$+$\frac{\sqrt{3}}{2}$sin2A-$\frac{3}{2}$=0,
即$\frac{\sqrt{3}}{2}$sin2A-$\frac{1}{2}$cos2A=1,
即sin(2A-$\frac{π}{6}$)=1;…4分
又∵A∈(0,π),
∴2A-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{11π}{6}$),
∴2A-$\frac{π}{6}$=$\frac{π}{2}$,
解得A=$\frac{π}{3}$;…6分
(2)由余弦定理得:16=b2+c2-bc,
∴16+bc=b2+c2≥2bc,
即bc≤16(當(dāng)且僅當(dāng)b=c時(shí)取等號(hào));
∴△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$bc≤4$\sqrt{3}$,
∴S的最大值是4$\sqrt{3}$,…9分
當(dāng)S取最大值時(shí),b=c;
又∵A=$\frac{π}{3}$,
∴△ABC是等邊三角形.…12分
點(diǎn)評(píng) 本題考查了平面向量的共線定理與正弦、余弦定理的應(yīng)用問(wèn)題,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 011 | B. | 1 006 | C. | 1 005 | D. | 1 003 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(18+\sqrt{3})π$ | B. | $(21+\sqrt{3})π$ | C. | $(18+\sqrt{5})π$ | D. | $(21+\sqrt{5})π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1]$ | B. | $(\frac{{12\sqrt{5}}}{5}-1,\frac{{12\sqrt{5}}}{5}+1)$ | C. | $[12-\sqrt{5},12+\sqrt{5}]$ | D. | $(12-\sqrt{5},12+\sqrt{5})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 66 | B. | 99 | C. | 198 | D. | 297 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{15}}}{6}$ | B. | $\frac{{\sqrt{5}-\sqrt{3}}}{6}$ | C. | $\frac{{2\sqrt{3}-\sqrt{5}}}{6}$ | D. | $\frac{{4-\sqrt{15}}}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 1 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com