已知拋物線y2=2px(p>0)與過焦點(diǎn)且斜率為1的直線交于A,B兩點(diǎn),若|AB|=2.
(1)求拋物線的方程;
(2)過點(diǎn)P(1,
2p
)作兩條直線PE,PF交拋物線于點(diǎn)E、F,若兩直線互相垂直,求證:EF恒過定點(diǎn),并求出此點(diǎn)的坐標(biāo).
考點(diǎn):直線與圓錐曲線的關(guān)系,拋物線的標(biāo)準(zhǔn)方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)設(shè)直線AB:y=x-
p
2
,聯(lián)立方程消去y,得到x2-3px+
p2
4
=0,運(yùn)用韋達(dá)定理和拋物線的定義,即可求出p,從而得到方程;
(2)可設(shè)E(y12,y1),F(xiàn)(y22,y2),且P(1,1),由PE與PF垂直,得
PE
PF
=0即有y1y2=-(y1+y2)-2,當(dāng)y1+y2≠0時(shí),寫出直線方程,化簡(jiǎn)判斷直線恒過定點(diǎn)(2,-1);當(dāng)y1+y2=0時(shí),化簡(jiǎn)得到直線EF:x=2,即可求出定點(diǎn)坐標(biāo).
解答: (1)解:由拋物線y2=2px(p>0)的焦點(diǎn)為(
p
2
,0),
設(shè)直線AB:y=x-
p
2

y2=2px
y=x-
p
2
得x2-3px+
p2
4
=0,設(shè)A(x1,y1),B(x2,y2),則x1+x2=3p,
由拋物線的定義得,|AB|=x1+x2+p=4p,
又|AB|=2,則p=
1
2

即拋物線方程是y2=x;
(2)證明:由題設(shè)可設(shè)E(y12,y1),F(xiàn)(y22,y2),且P(1,1),
由PE與PF垂直,得
PE
PF
=0,即(y1-1)(y2-1)+(y12-1)(y22-1)=0,
即(y1-1)(y2-1)[1+(y1+1)(y2+1)]=0,
即有y1y2=-(y1+y2)-2,
當(dāng)y1+y2≠0時(shí),直線EF:y-y1=
1
y1+y2
(x-y12).
即y=
1
y1+y2
(x+y1y2)=
1
y1+y2
[x-(y1+y2)-2],
則直線恒過定點(diǎn)(2,-1).
當(dāng)y1+y2=0時(shí),y1=-y2,由y1y2=-(y1+y2)-2=-2,
y12=2,直線EF:x=2,
故EF恒過定點(diǎn),此點(diǎn)的坐標(biāo)為(2,-1).
點(diǎn)評(píng):本題考查拋物線的方程、定義和性質(zhì),考查直線與拋物線的位置關(guān)系,考查聯(lián)立方程消去一個(gè)變量運(yùn)用韋達(dá)定理,及直線恒過定點(diǎn)的問題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)有兩個(gè)生產(chǎn)車間,分別位于邊長(zhǎng)是1km的等邊三角形ABC的頂點(diǎn)A、B處(如圖),現(xiàn)要在邊AC上的D點(diǎn)建一倉(cāng)庫(kù),某工人每天用叉車將生產(chǎn)原料從倉(cāng)庫(kù)運(yùn)往車間,同時(shí)將成品運(yùn)回倉(cāng)庫(kù).已知叉車每天要往返A(chǔ)車間5次,往返B車間20次,設(shè)叉車每天往返的總路程為skm.(注:往返一次即先從倉(cāng)庫(kù)到車間再由車間返回倉(cāng)庫(kù))
(Ⅰ)按下列要求確定函數(shù)關(guān)系式:
①設(shè)AD長(zhǎng)為x,將s表示成x的函數(shù)關(guān)系式;
②設(shè)∠ADB=θ,將s表示成θ的函數(shù)關(guān)系式.
(Ⅱ)請(qǐng)你選用(Ⅰ)中一個(gè)合適的函數(shù)關(guān)系式,求總路程s的最小值,并指出點(diǎn)D的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于兩個(gè)定義域相同的函數(shù)f(x),g(x),若存在實(shí)數(shù)m,n使得h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是“函數(shù)f(x),g(x)的一個(gè)線性表達(dá)”.
(1)若偶函數(shù)h(x)是“函數(shù)f(x)=x2+3x,g(x)=3x+4的一個(gè)線性表達(dá)”,求h(2);
(2)若h(x)=2x2+3x-1是“函數(shù)f(x)=x2+ax,g(x)=x+b(a,b∈R,ab≠0)的一個(gè)線性表達(dá)”,求a+2b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知增函數(shù)f(x)=
ax+b
1+x2
是定義在(-1,1)上的奇函數(shù),其中b∈R,a為正整數(shù),且滿足f(2)<
4
5

(1)求函數(shù)f(x)的解析式;
(2)求滿足f(t2-2t)+f(t)<0的t的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,得到如下列聯(lián)表:
文藝節(jié)目新聞節(jié)目總計(jì)
20至40歲401656
大于40歲202444
總計(jì)6040100
(1)用分層抽樣方法在收看新聞節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)抽取幾名?
(2)是否有99%的把握認(rèn)為收看文藝節(jié)目的觀眾與年齡有關(guān)?說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加2010年廣州亞運(yùn)會(huì)跳水項(xiàng)目,對(duì)甲、乙兩名運(yùn)動(dòng)員進(jìn)行培訓(xùn).現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績(jī)中隨機(jī)抽取6次,得出莖葉圖如圖所示.從平均成績(jī)及發(fā)揮穩(wěn)定性的角度考慮,你認(rèn)為選派哪名運(yùn)動(dòng)員合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,ABCD是直角梯形,AB⊥BC,AB∥CD,AB=2BC=2CD=2,點(diǎn)E為PA中點(diǎn).
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:平面PBC⊥平面PAB;
(Ⅲ)若∠PDA=
π
4
,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

今年5月,某商業(yè)集團(tuán)公司根據(jù)相關(guān)評(píng)分細(xì)則,對(duì)其所屬25家商業(yè)連鎖店進(jìn)行了考核評(píng)估,將各連鎖店的評(píng)估分?jǐn)?shù)按[60,70],[70,80],[80,90],[90,100]分成4組,其頻率分布直方圖如圖所示,集團(tuán)公司還依據(jù)評(píng)估得分,將這些連鎖店劃分為A、B、C、D四個(gè)等級(jí),等級(jí)評(píng)定標(biāo)準(zhǔn)如下表所示:
評(píng)估得分[60,70][70,80][80,90][90,100]
評(píng)定等級(jí)DCBA
(Ⅰ)估計(jì)該商業(yè)集團(tuán)各連鎖店評(píng)估得分的眾數(shù)和平均數(shù);
(Ⅱ)從評(píng)估分?jǐn)?shù)不少于80分的連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求至少選一家A等級(jí)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),x∈[-1,1]的圖象是由以原點(diǎn)為圓心的兩段圓弧及原點(diǎn)構(gòu)成(如圖所示),則不等式的f(-x)>f(x)+2
3
x的解集
 

查看答案和解析>>

同步練習(xí)冊(cè)答案