【題目】求下列函數(shù)的導(dǎo)數(shù).
(1)y=x4-3x2-5x+6;
(2)y=3x2+xcos x;
(3)y= + ;
(4)y=lg x- ;
(5)y=.
【答案】(1);
(2)
(3) - -
(4)y′= +
(5)y′=3x2-x-+x-2cos x-2x-3sin x
【解析】
試題根據(jù)初等函數(shù)的導(dǎo)數(shù)公式及導(dǎo)數(shù)運算法則 分別求出函數(shù)中各項的導(dǎo)數(shù)再進行求各或求差處理,最終得出結(jié)果.
試題解析:
(1) ;
(2) ;
(3)y′=( )′+( )′=2(x-2)′+3(x-3)′
=-4x-3-9x-4=- - ;
(4)y′=(lg x)′-(x-2)′= + ;
(5)∵y=x3+x- + ,
∴y′=(x3)′+(x-)′+′
=3x2-x-+
=3x2-x-+x-2cos x-2x-3sin x.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某自來水廠的蓄水池有噸水,水廠每小時可向蓄水池中注水噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內(nèi)供水總量為噸,其中.
(Ⅰ)從供水開始到第幾小時,蓄水池中的存水量最少? 最少水量是多少噸?
(Ⅱ)若蓄水池中水量少于噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的小時內(nèi),大約有幾小時出現(xiàn)供水緊張現(xiàn)象?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若關(guān)于的不等式的解集為,求實數(shù)的值;
(2)若對任意的,,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統(tǒng)計結(jié)果如表:
?繒r間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數(shù)量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r間為小時,求的值;
(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時,且在一晝夜的時間段中隨機到達,求這兩艘輪船中至少有一艘在?吭摬次粫r必須等待的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正四棱錐中,O為頂點S在底面ABCD內(nèi)的投影,P為側(cè)棱SD的中點,且.
(1)證明:平面PAC.
(2)求直線BC與平面PAC的所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,幾何體AMDCNB是由兩個完全相同的四棱錐構(gòu)成的幾何體,這兩個四棱錐的底面ABCD為正方形,,平面平面ABCD.
(1)證明:平面平面MDC.
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點.
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長為200米,現(xiàn)計劃建一個如圖所示的長方形停車場,停車場的四個頂點都在的三條邊上,其余的地面全部綠化.若建停車場的費用為180元/平方米,綠化的費用為60元/平方米,設(shè)米,建設(shè)工程的總費用為元.
(1)求關(guān)于的函數(shù)表達式:
(2)求停車場面積最大時的值,并求此時的工程總費用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com