【題目】已知函數(shù)有兩個不同的零點.
(1)求的取值范圍;
(2)記兩個零點分別為,且,已知,若不等式恒成立,求的取值范圍.
【答案】(1)(2)
【解析】試題分析:(Ⅰ)方程在有兩個不同跟等價于函數(shù)與函數(shù)的圖像在上有兩個不同交點,對進(jìn)行求導(dǎo),通過單調(diào)性畫出的草圖,由與有兩個交點進(jìn)而得出的取值范圍; (Ⅱ)分離參數(shù)得: ,從而可得恒成立;再令,從而可得不等式在上恒成立,再令,從而利用導(dǎo)數(shù)化恒成立問題為最值問題即可.
試題解析:(I)依題意,函數(shù)的定義域為,
所以方程在有兩個不同跟等價于函數(shù)與函數(shù)的圖像在上有兩個不同交點.
又,即當(dāng)時, ;當(dāng)時, ,
所以在上單調(diào)遞增,在上單調(diào)遞減.
從而.
又有且只有一個零點是1,且在時, ,在時, ,
所以的草圖如下:
可見,要想函數(shù)與函數(shù)在圖像上有兩個不同交點,只需.
(Ⅱ)由(I)可知分別為方程的兩個根,即, ,
所以原式等價于.
因為, ,所以原式等價于.
又由, 作差得, ,即.
所以原式等價于.
因為,原式恒成立,即恒成立.
令,則不等式在上恒成立.
令,則,
當(dāng)時,可見時, ,所以在上單調(diào)遞增,又在恒成立,符合題意;
當(dāng)時,可見當(dāng)時, ;當(dāng)時, ,
所以在時單調(diào)遞增,在時單調(diào)遞減.
又,所以在上不能恒小于0,不符合題意,舍去.
綜上所述,若不等式恒成立,只須,又,所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O、A、B三地在同一水平面內(nèi),A地在O地正東方向2km處,B地在O地正北方向2km處,某測繪隊員在A、B之間的直線公路上任選一點C作為測繪點,用測繪儀進(jìn)行測繪,O地為一磁場,距離其不超過km的范圍內(nèi)會測繪儀等電子儀器形成干擾,使測量結(jié)果不準(zhǔn)確,則該測繪隊員能夠得到準(zhǔn)確數(shù)據(jù)的概率是( 。
A.1-
B.
C.1-
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線經(jīng)過曲線的左焦點.
(1)求直線的普通方程;
(2)設(shè)曲線的內(nèi)接矩形的周長為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若函數(shù)有三個不同的極值點,求的值;
(2)若存在實數(shù),使對任意的,不等式恒成立,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】☉O為△ABC的內(nèi)切圓,AB=9,BC=8,CA=10,點D,E分別為AB,AC上的點,且DE為☉O的切線,求△ADE的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】微信已成為人們常用的社交軟件,“微信運動”是微信里由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.手機用戶可以通過關(guān)注“微信運動”公眾號查看自己每天行走的步數(shù),同時也可以和好友進(jìn)行運動量的或點贊.現(xiàn)從小明的微信朋友圈內(nèi)隨機選取了40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下表:
步數(shù) 性別 | 02000 | 20015000 | 50018000 | 800110000 | >10000 |
男 | 1 | 2 | 4 | 7 | 6 |
女 | 0 | 3 | 9 | 6 | 2 |
若某人一天的走路步數(shù)超過8000步被系統(tǒng)評定為“積極型”,否則被系統(tǒng)評定為“懈怠型”.
(1)利用樣本估計總體的思想,試估計小明的所有微信好友中每日走路步數(shù)超過10000步的概率;
(2)根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有90%的把握認(rèn)為“評定類型”與“性別”有關(guān)?
積極型 | 懈怠型 | 總計 | |
男 | |||
女 | |||
總計 |
附:
0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若曲線在點處的切線與直線垂直,求函數(shù)的極值;
(2)設(shè)函數(shù).當(dāng)=時,若區(qū)間[1,e]上存在x0,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P(a,b)(ab≠0)是圓x2+y2=r2內(nèi)的一點,直線m是以P為中點的弦所在直線,直線l的方程為ax+by=r2 , 那么( )
A.m∥l,且l與圓相交
B.m⊥l,且l與圓相切
C.m∥l,且l與圓相離
D.m⊥l,且l與圓相離
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com