【題目】已知四棱錐P﹣ABCD的底面ABCD是平行四邊形,△PAB與△ABC是等腰三角形,PA⊥平面ABCD,PA=2,AD=2 ,AC⊥BA,點(diǎn)E是線段AB上靠近點(diǎn)B的一個(gè)三等分點(diǎn),點(diǎn)F、G分別在線段PD,PC上.
(Ⅰ)證明:CD⊥AG;
(Ⅱ)若三棱錐E﹣BCF的體積為 ,求 的值.

【答案】解:(Ⅰ)證明:依題意,因?yàn)锳B∥CD,AC⊥BA,所以AC⊥CD. 又因?yàn)镻A⊥底面ABCD,所以PA⊥CD,
因?yàn)锳C∩PA=A,所以CD⊥平面PAC,
因?yàn)锳G平面PAC,所以CD⊥AG.
(Ⅱ)解:設(shè)點(diǎn)F到平面ABCD的距離為d,
,
,得 ,


【解析】(Ⅰ)由AB∥CD,AC⊥BA,可得AC⊥CD.由PA⊥底面ABCD,可得PA⊥CD,可得CD⊥平面PAC,即可證明CD⊥AG.(II)設(shè)點(diǎn)F到平面ABCD的距離為d,利用三棱錐的體積計(jì)算公式可得:VE﹣BCF=VF﹣BEC , 可得d,進(jìn)而得出答案.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某店銷售進(jìn)價(jià)為2元/件的產(chǎn)品,該店產(chǎn)品每日的銷售量(單位:千件)與銷售價(jià)格(單位:元/件)滿足關(guān)系式,其中.

(1)若產(chǎn)品銷售價(jià)格為4元/件,求該店每日銷售產(chǎn)品所獲得的利潤(rùn);

(2)試確定產(chǎn)品的銷售價(jià)格,使該店每日銷售產(chǎn)品所獲得的利潤(rùn)最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線與直線垂直(其中為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求的解析式及單調(diào)遞減區(qū)間;

(Ⅱ)若函數(shù)無零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解甲、乙兩名同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他們的次數(shù)學(xué)測(cè)試成績(jī)(滿分分)進(jìn)行統(tǒng)計(jì),作出如下的莖葉圖,其中處的數(shù)字模糊不清,已知甲同學(xué)成績(jī)的中位數(shù)是,乙同學(xué)成績(jī)的平均分是.

(1)求的值;

(2)現(xiàn)從成績(jī)?cè)?/span>之間的試卷中隨機(jī)抽取兩份進(jìn)行分析,求恰抽到一份甲同學(xué)試卷的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

,求函數(shù)的單調(diào)區(qū)間;

若函數(shù)的圖象在點(diǎn)處的切線的傾斜角為,對(duì)于任意的,函數(shù)在區(qū)間上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,且過點(diǎn)M(4,1). (Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=x+m(m≠﹣3)與橢圓C交于P,Q兩點(diǎn),記直線MP,MQ的斜率分別為k1 , k2 , 試探究k1+k2是否為定值.若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代名著《九章算術(shù)》中有這樣一段話:“今有金錘,長(zhǎng)五尺,斬本一尺,重四斤.?dāng)啬┮怀,重二斤.”意思是:“現(xiàn)有一根金錘,頭部的1尺,重4斤;尾部的1尺,重2斤;且從頭到尾,每一尺的重量構(gòu)成等差數(shù)列.”則下列說法錯(cuò)誤的是(
A.該金錘中間一尺重3斤
B.中間三尺的重量和是頭尾兩尺重量和的3倍
C.該金錘的重量為15斤
D.該金錘相鄰兩尺的重量之差的絕對(duì)值為0.5斤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為: ,(θ∈[﹣ , ]),曲線C: (t為參數(shù)).
(Ⅰ)求C1的直角坐標(biāo)方程;
(Ⅱ)C與C1相交于A,B,與C2相切于點(diǎn)Q,求|AQ|﹣|BQ|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,直線PA⊥平面ABCD,AD∥BC,AB⊥AD,BC=2AB=2AD=4BE=4.
(I)求證:直線DE⊥平面PAC.
(Ⅱ)若直線PE與平面PAC所成的角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案