分析 曲線C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù),0≤θ<2π)化為(x+2)2+y2=1,設(shè)$\frac{y}{x}$=k,即kx-y=0,利用直線與圓的位置關(guān)系即可得出.
解答 解:曲線C:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù),0≤θ<2π)化為(x+2)2+y2=1,表示以(-2,0)為圓心,1為半徑的圓.
設(shè)$\frac{y}{x}$=k,即kx-y=0,
則$\frac{|-2k|}{\sqrt{1+{k}^{2}}}$≤1,化為:${k}^{2}≤\frac{1}{3}$,解得$-\frac{\sqrt{3}}{3}$≤k$≤\frac{\sqrt{3}}{3}$.
故答案為:$[-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}]$.
點評 本題考查了參數(shù)方程化為普通方程、點到直線的距離公式、不等式的解法、直線與圓的位置關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com