12.若點(diǎn)在圓C:x2+y2=1上,則4x+3y的最大值為5.

分析 由柯西不等式,可得(x2+y2)(42+32)≥(4x+3y)2,即可求出4x+3y的最大值.

解答 解:由柯西不等式,可得(x2+y2)(42+32)≥(4x+3y)2
∴4x+3y≤5,
∴4x+3y的最大值為5,
故答案為:5.

點(diǎn)評(píng) 本題考查4x+3y的最大值,考查柯西不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知log2(x+y)=log2x+log2y,則$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個(gè)數(shù)${0.3^π},{π^{0.3}},sin\frac{20π}{3}$的大小順序是( 。
A.$sin\frac{20π}{3}<{0.3^π}<{π^{0.3}}$B.$sin\frac{20π}{3}<{π^{0.3}}<{0.3^π}$
C.${0.3^π}<sin\frac{20π}{3}<{π^{0.3}}$D.${0.3^π}<{π^{0.3}}<sin\frac{20π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.長度為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上運(yùn)動(dòng),若點(diǎn)P滿足$\overrightarrow{BP}$=2$\overrightarrow{PA}$.設(shè)動(dòng)點(diǎn)P軌跡為曲線C.
(I)求曲線C的方程;
(Ⅱ)點(diǎn)P在曲線C上,點(diǎn)F的坐標(biāo)為($\sqrt{3}$,0),若點(diǎn)Q是直線l:x=$\frac{4\sqrt{3}}{3}$上任意一點(diǎn),且滿足PF⊥FQ,是判斷直線PQ與曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,D、E分別是△ABC的邊AB、AC上的點(diǎn),DE∥BC,且$\frac{AD}{DB}$=2,那么△ADE與四邊形DBCE的面積比是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出四個(gè)命題:
(1)$\frac{{x}^{2}+2}{\sqrt{{x}^{2}+1}}$的最小值為2;      (2)2-3x-$\frac{4}{x}$的最大值為2-4$\sqrt{3}$;
(3)logx10+lgx的最小值為2;   (4)sin2x+$\frac{4}{si{n}^{2}x}$的最小值為4.
其中真命題的個(gè)數(shù)是( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$\frac{2sin20°+sin40°}{sin50°}$$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x2-x-2<0},B={x|$\frac{1}{x-1}$≤1},則A∩B=( 。
A.(-1,1]B.(-1,1)C.D.[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,則a,b,c的大小順序是a>b>c.

查看答案和解析>>

同步練習(xí)冊答案