14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的單調(diào)遞增區(qū)間.

分析 (Ⅰ)進(jìn)行數(shù)量積的坐標(biāo)運(yùn)算并化簡(jiǎn)即可得出$f(x)=\sqrt{2}sin(2x+\frac{π}{4})$,從而便可得出f(x)的最小正周期;
(Ⅱ)根據(jù)x$∈[\frac{π}{4},\frac{3π}{4}]$即可求出2x+$\frac{π}{4}$的范圍,進(jìn)而得出2x$+\frac{π}{4}$在哪個(gè)范圍時(shí)f(x)單調(diào)遞增,進(jìn)而求出對(duì)應(yīng)x的范圍,即得出f(x)的單調(diào)遞增區(qū)間.

解答 解:(I)f(x)=(cosx+sinx)(cosx-sinx)+2sinx•cosx
=cos2x-sin2x+2sinxcosx
=cos2x+sin2x
=$\sqrt{2}sin(2x+\frac{π}{4})$;
∴$T=\frac{2π}{2}=π$;
即f(x)的最小正周期為π;
(II)$x∈[\frac{π}{4},\frac{3π}{4}]$;
∴$(2x+\frac{π}{4})∈[\frac{3π}{4},\frac{7π}{4}]$;
∴$(2x+\frac{π}{4})∈[\frac{3π}{2},\frac{7π}{4}]$,即$x∈[\frac{5π}{8},\frac{3π}{4}]$時(shí)f(x)單調(diào)遞增;
∴f(x)的單調(diào)遞增區(qū)間為$[\frac{5π}{8},\frac{3π}{4}]$.

點(diǎn)評(píng) 考查數(shù)量積的坐標(biāo)運(yùn)算,二倍角的正弦公式,兩角和的正余弦公式,以及求最小正周期的計(jì)算公式,熟悉正弦函數(shù)的圖象,以及增函數(shù)的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若(a+x)(1-x)4的展開(kāi)式的奇次項(xiàng)系數(shù)和為48,則實(shí)數(shù)a之值為-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.函數(shù)f(x)=$\frac{2x-1}{x+3}$(x∈(-5,-4)∪(2,5)),則f(x)的值域是(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2acos2x+bsinxcosx,f(0)=2,f($\frac{π}{3}$)=$\frac{{1+\sqrt{3}}}{2}$.
(1)求f(x)的最大值和最小值;
(2)求f(x)的單調(diào)遞增區(qū)間
(3)對(duì)于角α,β,若有α-β≠kπ,k∈Z,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在數(shù)列{an}中,a1=1,a2=5,an+2=an+1-an(n∈N+),則a2017=( 。
A.5B.-5C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.函數(shù)f(x)的定義域?yàn)閇0,8],則函數(shù)$\frac{f(2x)}{x-4}$的定義域?yàn)椋ā 。?table class="qanwser">A.[0,4]B.[0,4)C.(0,4)D.[0,4)∪(4,16]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若3x=a,5x=b,則45x等于( 。
A.a2bB.ab2C.a2+bD.a2+b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知tanα=3,α∈(0,π),則cos(${\frac{5π}{2}$+2α)=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,a、b、c為角A、B、C所對(duì)的三邊,已知b2+c2-a2=-bc.
(1)求角A的值;
(2)若a=$\sqrt{3}$,cos(A-C)+cosB=$\frac{\sqrt{3}}{2}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案