16.設(shè)m,n表示兩條不同的直線,α,β,γ表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若α⊥γ,β⊥γ,則α∥β;
②若α∥β,m?α,則m∥β;
③若m⊥α,n∥α,則m⊥n;
④若m⊥n,m⊥α,n∥β,則α⊥β.
其中正確命題的序號(hào)是(  )
A.①④B.②③C.①②③D.②③④

分析 根據(jù)空間中直線與平面,平面與平面的位置關(guān)系的幾何特征,逐一分析給定四個(gè)結(jié)論的真假,可得答案.

解答 解:①若α⊥γ,β⊥γ,則α,β可能平行也可能相交,故①錯(cuò)誤;
②若α∥β,m?α,則m∥β,故②正確;
③若n∥α,則存在直線a?α,使n∥a,
若m⊥α,則m⊥a,進(jìn)而m⊥n,故③正確;
④若m⊥n,m⊥α,則n∥α,或n?α,若n∥β,則α,β的關(guān)系不能確定,故④錯(cuò)誤.
故選:B

點(diǎn)評(píng) 本題以命題的真假判斷與應(yīng)用為載體,考查了空間直線與直線,直線與平面的位置關(guān)系,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1),過右焦點(diǎn)且斜率為1的直線交橢圓于A、B兩點(diǎn).
(1)證明:$\overrightarrow{OA}$+$\overrightarrow{OB}$與向量$\overrightarrow{m}$=(a2,-1)共線;
(2)設(shè)$\overrightarrow{OM}$=μ$\overrightarrow{OA}$+λ$\overrightarrow{OB}$,當(dāng)μ22=1且M在橢圓上時(shí),求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列關(guān)于命題的說法錯(cuò)誤的是(  )
A.在△ABC中,∠A=∠B是sin∠A=sin∠B的充要條件
B.命題“若|x|>|y|,則x>y”的否命題是“若|x|≤|y|,則x≤y”
C.復(fù)數(shù)(a+bi)(1+i)與復(fù)數(shù)-1+3i相等的充要條件是“a=1,b=2”
D.命題“?x∈(0,+∞),2x>1”的否定是“?x0∈(-∞,0],2${\;}^{{x}_{0}}$≤1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)正實(shí)數(shù)x,y滿足log${\;}_{\frac{1}{2}}$x+log2y=m(m∈[-1,1]),若不等式(x+y)2≤2ax2+(a+1)y2有解,則實(shí)數(shù)a的取值范圍是(  )
A.a≥1B.a≥$\frac{8}{9}$C.a≥$\frac{7}{8}$D.a≥$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0\;\;,\;\;b>0})$的焦距為10,點(diǎn)P(1,2)在C的漸近線上,則C的方程為( 。
A.$\frac{x^2}{20}-\frac{y^2}{5}=1$B.$\frac{x^2}{5}-\frac{y^2}{20}=1$C.$\frac{x^2}{80}-\frac{y^2}{20}=1$D.$\frac{x^2}{20}-\frac{y^2}{80}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖:在斜三棱柱ABC-A1B1C1中,四邊形ABB1A1是菱形,四邊形CBB1C1是矩形,AC=5,CB=3,AB=4,∠A1AB=60°.
(1)求證:平面CA1B⊥平面ABB1A1;
(2)求直線A1C與平面ABC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.圓C1:x2+y2+2x+8y-8=0和圓C2:x2+y2-4x-5=0的位置關(guān)系為相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí)都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù),設(shè)f(x)在[0,1]為非減函數(shù),且滿足以下三個(gè)條件;①f(0)=0;②f($\frac{x}{3}$)=$\frac{1}{2}$f(x);③f(1-x)=1-f(x),則f($\frac{1}{3}$)+f($\frac{1}{8}$)等于(  )
A.$\frac{1}{128}$B.$\frac{1}{256}$C.$\frac{1}{512}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“a2>b2”是“l(fā)na>lnb”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案