18.如果方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是( 。
A.(1,+∞)B.(1,2)C.($\frac{1}{2}$,1)D.(0,1)

分析 化曲線方程為橢圓的標(biāo)準(zhǔn)方程,由題意可得$\frac{2}{k}>2$,求解此不等式可得k的取值范圍.

解答 解:由x2+ky2=2,得$\frac{{x}^{2}}{2}+\frac{{y}^{2}}{\frac{2}{k}}=1$,
∵方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,
∴$\frac{2}{k}>2$,解得0<k<1.
∴實(shí)數(shù)k的取值范圍是(0,1).
故選:D.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了橢圓的標(biāo)準(zhǔn)方程,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知點(diǎn)P位橢圓C:$\frac{x^2}{4}+\frac{y^2}{9}=1$上任意一點(diǎn),則P到直線l:2x-y=12的距離的最小值為( 。
A.$\frac{7}{5}$B.$\frac{7}{5}\sqrt{5}$C.$\frac{17}{5}$D.$\frac{17}{5}\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.《莊子•天下篇》中記述了一個(gè)著名命題:“一尺之錘,日取其半,萬世不竭”.反映這個(gè)命題本質(zhì)的式子是( 。
A.1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$B.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$<1
C.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$=1D.$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個(gè)四棱錐的三視圖如圖所示(單位:cm),這個(gè)四棱錐的體積為72cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=2sin(2x+φ)\;(|φ|<\frac{π}{2})$部分圖象如圖所示.
(Ⅰ)求f(x)的最小正周期及圖中x0的值;
(Ⅱ)求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,ABCD-A1B1C1D1是正方體,O、M、N分別是B1D1、AB1、AD1的中點(diǎn),直線A1C交平面AB1D1于點(diǎn)P.
(Ⅰ)證明:MN∥平面CB1D1;
(Ⅱ)證明:①A、P、O、C四點(diǎn)共面;②A、P、O三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=$\frac{2}{5}$,an+1=$\frac{2{a}_{n}}{3-{a}_{n}}$,n∈N*
(1)求a2
(2)求{$\frac{1}{{a}_{n}}$}的通項(xiàng)公式;
(3)設(shè){an}的前n項(xiàng)和為Sn,求證:$\frac{6}{5}$(1-($\frac{2}{3}$)n)≤Sn<$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知雙曲線$\frac{x^2}{12}-\frac{y^2}{4}=1$,過焦點(diǎn)F1的弦AB(A、B在雙曲線的同支上)長為8,另一焦點(diǎn)為F2,則△ABF2的周長為8$\sqrt{3}$+16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若不等式$\frac{{a}^{2}+^{2}}{2}$+1>m(a+b)對(duì)任意正數(shù)a,b恒成立,則實(shí)數(shù)m的取值范圍是( 。
A.(-∞,$\frac{1}{2}$)B.(-∞,1)C.(-∞,2)D.(-∞,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案