6.已知函數(shù)f(x)=x2-bx+c,f(x)的對稱軸為x=1且f(0)=-1.
(1)求b,c的值;
(2)當x∈[0,3]時,求f(x)的取值范圍.
(3)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍.

分析 (1)利用二次函數(shù)的性質(zhì)求解即可;
(2)求出二次函數(shù)的表達式,配方,根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域;
(3)利用二次函數(shù)的圖象可得出log2k>2或log2k<0,根據(jù)對數(shù)函數(shù)求解.

解答 解:(1)∵f(x)的對稱軸為x=1且f(0)=-1,
∴$\frac{2a}$=1,f(0)=c=-1,
∴b=2,c=-1;
(2)由(1)得:f(x)=x2-2x-1=(x-1)2-2,
∴x∈[0,3]時,最小值為-2,最大值為f(3)=2,
∴f(x)的取值范圍為[-2,2];
(3)f(log2k)>f(2)=-1,
∴l(xiāng)og2k>2或log2k<0,
∴k>4或0<k<1.

點評 考查了二次函數(shù)的性質(zhì)和閉區(qū)間求函數(shù)的最值及對數(shù)函數(shù)的應(yīng)用,屬于基礎(chǔ)題型,應(yīng)熟練掌握.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知隨機變量ξ~B(5,$\frac{1}{3}$),隨機變量η=2ξ-1,則E(η)=$\frac{7}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設(shè)平面α,β,直線a,b,集合A={垂直于α的平面},B={垂直于β的平面},M={垂直于a的直線},N={垂直于b的直線},下列四個命題中
①若A∩B≠∅,則α∥β②若α∥β,則A=B③若a,b異面,則M∩N=∅④若a,b相交,則M=N
不正確的是( 。
A.①②B.③④C.①③④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.函數(shù)f(x)=$\frac{ax+b}{{1+{x^2}}}$是定義在(-1,1)上的奇函數(shù),且f($\frac{1}{2}$)=$\frac{2}{5}$.
(Ⅰ)求f(x)的解析式,
(Ⅱ)用函數(shù)單調(diào)性的定義證明f(x)在(-1,1)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.對于給定的非空數(shù)集,其最大元素最小元素的和稱為該集合的“特征值”,A1,A2,A3,A4,A5都含有20個元素,且A1∪A2∪A3∪A4∪A5={x∈N*|x≤100},則這A1,A2,A3,A4,A5的“特征值”之和的最小值為325.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.現(xiàn)在有10張獎券,8張2元的,2張5元的,某人從中隨機無放回地抽取3張獎券,則此人得獎金額的數(shù)學期望為( 。
A.6B.$\frac{39}{5}$C.$\frac{41}{5}$D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設(shè)F1,F(xiàn)2是橢圓E的兩個焦點,P為橢圓E上的點,以PF1為直徑的圓經(jīng)過F2,若tan∠PF1F2=$\frac{{2\sqrt{5}}}{15}$,則橢圓E的離心率為( 。
A.$\frac{{\sqrt{5}}}{6}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知$\frac{1+sin2θ}{co{s}^{2}θ-si{n}^{2}θ}$=-3,則tanθ=(  )
A.2B.-1C.-1或2D.1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知x與y之間的一組數(shù)據(jù):
x014m3
ym35.57
根據(jù)數(shù)據(jù)可求得y關(guān)于x的線性回歸方程為$\hat y$=2.1x+0.85,則m的值為0.5.

查看答案和解析>>

同步練習冊答案