分析 (Ⅰ)證明BC⊥面PAC,推出BC⊥AE,然后證明AE⊥PB,推出AE⊥平面PBC,然后證明平面AEC⊥平面PBC.
(Ⅱ)作BO⊥平面APC,取PO的中點(diǎn)G,連結(jié)EG,連結(jié)AG,說明∠EAG就是直線AE與平面PAC所成角,通過解三角形求解即可.
解答 (Ⅰ)證明:∵PA⊥⊙O所在平面,且BC為⊙O的弦,
∴PA⊥BC
∵AB為⊙O的直徑,
∴BC⊥AC.
而PA∩AC=A.
∴BC⊥面PAC,
∵AE?平面PAC,∴BC⊥AE,
∵PA=AB,PA⊥平面ABC,點(diǎn)E為PB的中點(diǎn).
∴AE⊥PB,PB∩BC=B,
∴AE⊥平面PBC.
∵AE?平面AEC,
∴平面AEC⊥平面PBC.
(Ⅱ)解:作BO⊥平面APC,取PO的中點(diǎn)G,連結(jié)EG,
則EG∥BO,⇒EG⊥平面PAC,連結(jié)AG,
∴∠EAG就是直線AE與平面PAC所成角,
AE=$\frac{1}{2}$PB=2,GE=$\frac{1}{2}OB$=1,
∴sin∠EAG=$\frac{GE}{AE}$=$\frac{1}{2}$,
∴直線AE與平面PAC所成角為:$\frac{π}{6}$.
點(diǎn)評 本題考查的知識(shí)點(diǎn)是直線與平面垂直的判定,直線與平面所成角的求法,其中熟練掌握空間線面垂直、平行的判定、性質(zhì),善于根據(jù)直角三角形、圓周角的性質(zhì),判斷出直線與直線垂直是解答本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
P(K2≥k) | … | 0.25 | 0.15 | 0.10 | 0.025 | 0.010 | 0.005 | … |
k | … | 1.323 | 2.072 | 2.706 | 5.024 | 6.635 | 7.879 | … |
A. | 90% | B. | 95% | C. | 97.5% | D. | 99.5% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
B. | 在線性回歸分析中,回歸直線不一定過樣本點(diǎn)的中心($\overline{x}$,$\overline{y}$) | |
C. | 在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好 | |
D. | 自變量取值一定時(shí),因變量的取值帶有一定隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com