8.銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗(yàn)公式P=$\frac{1}{5}$t,Q=$\frac{3}{5}\sqrt{t}$.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對(duì)甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)對(duì)甲種商品投資x(單位:萬元)為多少時(shí)?總利潤y(單位:萬元)值最大.

分析 (1)通過設(shè)出甲投資以及乙投資的數(shù)目,設(shè)立函數(shù)表達(dá)式,根據(jù)函數(shù)式直接寫出定義域;
(2)對(duì)于(1)中的函數(shù)解析式,利用換元法轉(zhuǎn)化成一個(gè)二次函數(shù)的形式,最后結(jié)合二次函數(shù)的最值求法得出函數(shù)的最大值,從而解決問題.

解答 解:(1)$y=\frac{1}{5}x+\frac{3}{5}\sqrt{3-x}$(0≤x≤3)…6分
(2)設(shè)$\sqrt{3-x}=t$,x=3-t2,因?yàn)?≤x≤3,所以$0≤t≤\sqrt{3}$,…8分$y=\frac{1}{5}(3-{t^2})+\frac{3}{5}t=-\frac{1}{5}{t^2}+\frac{3}{5}t+\frac{3}{5}=-\frac{1}{5}{(t-\frac{3}{2})^2}+\frac{21}{20}$.$(0≤t≤\sqrt{3})$…12分
當(dāng)$t=\frac{3}{2}$時(shí),即 $x=\frac{3}{4}$時(shí),${y_{max}}=\frac{21}{20}$.…13分
答:應(yīng)甲種商品投資$\frac{3}{4}$萬元,對(duì)乙種商品投資$\frac{9}{4}$萬元時(shí),總利潤最大,最大值為$\frac{21}{20}$萬元.…14分.

點(diǎn)評(píng) 本題考查函數(shù)模型的選擇與應(yīng)用,通過對(duì)實(shí)際問題的分析,構(gòu)造數(shù)學(xué)模型從而解決問題.需要對(duì)知識(shí)熟練的掌握并應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在正方體ABCD-A'B'C'D'中,點(diǎn)P在線段AD'上,且AP≤$\frac{1}{2}$AD'則異面直線CP與BA'所成角θ的取值范圍是[$\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=ex(sinx+a)在區(qū)間(0,π)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\sqrt{2}$,+∞)B.[1,+∞)C.(-∞,-$\sqrt{2}$]D.(-∞,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)命題p:?x∈R,都有ax2>-ax-1(a≠0)恒成立;命題q:圓x2+y2=a2與圓(x+3)2+(y-4)2=4外離.如果命題“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)lg(4a)+lgb=2lg(a-3b),則log3$\frac{a}$的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知f(x)=$\frac{a•{2}^{x}+a+2}{{2}^{x}+1}$(x∈R),若f(x)滿足f(-x)=-f(x).
(1)求實(shí)數(shù)a的值;
(2)證明f(x)是R上的單調(diào)減函數(shù)(定義法).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{-x+3,-1≤x≤1}\\{1+lo{g}_{({a}^{2}-1)}(2x),2≤x≤8}\end{array}\right.$的值域是[2,5],則實(shí)數(shù)a的取值是$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某產(chǎn)品關(guān)稅與市場供應(yīng)量P的關(guān)系近似地滿足:P(x)=2${\;}^{(1-kt){{(x-b)}{\;}^2}}}$(其中t為關(guān)稅的稅率,且t∈[0,$\frac{1}{2}}$],x為市場價(jià)格,b,k為正常數(shù)),當(dāng)t=$\frac{1}{8}$時(shí),市場供應(yīng)量曲線如圖所示:
(1)根據(jù)函數(shù)圖象求k,b的值;
(2)若市場需求量Q,它近似滿足Q(x)=2${\;}^{(11-\frac{1}{2}x)}}$.當(dāng)P=Q時(shí)的市場價(jià)格為均衡價(jià)格,為使均衡價(jià)格控制在不低于9元的范圍內(nèi),求稅率t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若銳角△ABC的面積為10$\sqrt{3}$,且AB=8,AC=5,則BC等于7.

查看答案和解析>>

同步練習(xí)冊(cè)答案