若數(shù)列{an}的前n項(xiàng)和Sn=an+,則{an}的通項(xiàng)公式是an=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題6第1課時(shí)練習(xí)卷(解析版) 題型:解答題
中國(guó)共產(chǎn)黨第十八次全國(guó)代表大會(huì)期間,某報(bào)刊媒體要選擇兩名記者去進(jìn)行專題采訪,現(xiàn)有記者編號(hào)分別為1,2,3,4,5的五名男記者和編號(hào)分別為6,7,8,9的四名女記者.要從這九名記者中一次隨機(jī)選出兩名,每名記者被選到的概率是相等的,用符號(hào)(x,y)表示事件“抽到的兩名記者的編號(hào)分別為x、y,且x<y”.
(1)共有多少個(gè)基本事件?并列舉出來;
(2)求所抽取的兩名記者的編號(hào)之和小于17但不小于11或都是男記者的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第2課時(shí)練習(xí)卷(解析版) 題型:解答題
已知四棱錐P-ABCD中,底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
(1)求證:BE∥平面PDA;
(2)若N為線段PB的中點(diǎn),求證:NE⊥平面PDB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題4第1課時(shí)練習(xí)卷(解析版) 題型:選擇題
已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( )
A.108 cm3 B.100 cm3 C.92 cm3 D.84 cm3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第3課時(shí)練習(xí)卷(解析版) 題型:解答題
某工業(yè)城市按照“十二五”(2011年至2015年)期間本地區(qū)主要污染物排放總量控制要求,進(jìn)行減排治污.現(xiàn)以降低SO2的年排放量為例,原計(jì)劃“十二五”期間每年的排放量都比上一年減少0.3萬噸,已知該城市2011年SO2的年排放量約為9.3萬噸.
(1)按原計(jì)劃,“十二五”期間該城市共排放SO2約多少萬噸?
(2)該城市為響應(yīng)“十八大”提出的建設(shè)“美麗中國(guó)”的號(hào)召,決定加大減排力度.在2012年剛好按原計(jì)劃完成減排任務(wù)的條件下,自2013年起,SO2的年排放量每年比上一年減少的百分率為p,為使2020年這一年SO2的年排放量控制在6萬噸以內(nèi),求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第2課時(shí)練習(xí)卷(解析版) 題型:選擇題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a11-a8=3,S11-S8=3,則使an>0的最小正整數(shù)n的值是( )
A.8 B.9
C.10 D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題3第1課時(shí)練習(xí)卷(解析版) 題型:填空題
已知命題:若數(shù)列{an}為等差數(shù)列,且am=a,an=b(m≠n,m、n∈N*),則am+n=;現(xiàn)已知等比數(shù)列{bn}(bn>0,n∈N*), bm=a,bn=b(m≠n,m、n∈N*),若類比上述結(jié)論,則可得到bm+n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題2第3課時(shí)練習(xí)卷(解析版) 題型:填空題
在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,+=λ,則λ=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測(cè)試專題1第5課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=ln x+ax(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-4x+2,若對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com