考點:數(shù)列遞推式,數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)把“當(dāng)n≥2時an=Sn-Sn-1”代入3Sn2=an(3Sn-1),化簡后取倒數(shù),再由等差數(shù)列的定義進行證明;
(2)由(1)和等差數(shù)列的通項公式化簡bn,利用裂項相消法求出數(shù)列{bn}的前n項和.
解答:
證明:(1)當(dāng)n≥2時a
n=S
n-S
n-1,代入3S
n2=a
n(3S
n-1),
得3S
n2=(S
n-S
n-1)(3S
n-1),化簡得S
n-1-S
n=3S
n-1S
n,
兩邊同除以S
n-1S
n,得
-=3,
又a
1=1,則
=1,
所以數(shù)列{
}為等差數(shù)列是以1為首項、3為公差的等差數(shù)列;
解(2)由(1)得,
=1+3(n-1)=3n-2,
所以S
n=
,則b
n=
=
=
(
-),
則數(shù)列{b
n}的前n項和S=
[(1-
)+(
-
)+…+(
-)]
=
(1-
)=
.
點評:本題考查數(shù)列的遞推式,等差數(shù)列的定義、通項公式,以及裂項相消法求出數(shù)列的前n項和,考查轉(zhuǎn)化思想和靈活變形能力.