已知正數(shù)a,b滿足2a+b=ab,則a+2b的最小值為
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”與基本不等式的性質(zhì)即可得出.
解答: 解:∵正數(shù)a,b滿足2a+b=ab,
1
a
+
2
b
=1.
則a+2b=(a+2b)(
1
a
+
2
b
)
=5+
2b
a
+
2a
b
≥5+2×2
b
a
a
b
=9,當(dāng)且僅當(dāng)a=b=3時取等號,
因此a+2b的最小值為9.
點評:本題考查了“乘1法”與基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是一次函數(shù),且其在定義域內(nèi)是增函數(shù),又f-1[f-1(x)]=4x-12,試求f(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
x+y-2≥0
x≤4
,則z=x-2y的最小值是(  )
A、-4B、-6C、-8D、-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:實數(shù)x滿足x2-5ax+4a2<0,其中a>0,命題q:實數(shù)x滿足x2-4x+3≤0.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q成立的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為sn,已知a1=1,且滿足3Sn2=an(3Sn-1)(n≥2)
(1)求證:{
1
Sn
}為等差數(shù)列
(2)設(shè)bn=
Sn
3n+1
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“2b=a+c“是“a,b,c成等差數(shù)列”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2-2x-3<0;命題q:-1<x<m+6
(1)求不等式x2-2x-3<0的解集;
(2)若p是q的充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax-a-x
ax+a-x
(a>0,a≠1)
(1)判定函數(shù)f(x)的奇偶性;
(2)判定函數(shù)f(x)的單調(diào)性并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足約束條件
x+y-2≥0
y≤2
x-y≤0
,則z=2x+y的最大值為( 。
A、3B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊答案