分析 (Ⅰ)n=1時,可求得a1=1;依題意,4Sn=(an+1)2,n≥2時,4Sn-1=(an-1+1)2,二式相減,可得an-an-1=2,從而可求數(shù){an}的通項公式;
(Ⅱ)利用裂項法可求得$\frac{2}{{a}_{n}{a}_{n-1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,于是可求數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項和Tn,利用放縮法即可證明.
解答 解:(Ⅰ)n=1時,a1=1,
n≥2時,4Sn-1=(an-1+1)2,
又4Sn=(an+1)2,
兩式相減得:(an+an-1)(an-an-1-2)=0,
∵an>0,
∴an-an-1=2,
∴數(shù)列{an}是以1為首項,2為公差的等差數(shù)列,即an=2n-1.
(Ⅱ)由$\frac{2}{{a}_{n}{a}_{n-1}}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
故Tn=(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=1-$\frac{1}{2n+1}$<1
當(dāng)n=1時,T1=$\frac{2}{3}$,
故$\frac{2}{3}$<Tn<1(n∈N*)
點評 本題考查數(shù)列的求和,考查數(shù)列的遞推式與裂項法求和的應(yīng)用,求得數(shù)列{an}的通項公式an=2n-1是解決問題的關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若命題p:?x0∈R,x02-x0+1<0,則¬p:?x∉R,x2-x+1≥0 | |
B. | 已知相關(guān)變量(x,y)滿足回歸方程$\stackrel{∧}{y}$=2-4x,若變量x增加一個單位,則y平均增加4個單位 | |
C. | 命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標(biāo)軸都有公共點,則實數(shù)m∈[0,1]為真命題 | |
D. | 已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\;\frac{1}{3})$ | B. | $(\frac{1}{3},\;\frac{1}{2})$ | C. | $(\frac{1}{2},\;\frac{2}{3})$ | D. | $(\frac{2}{3},\;1)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,4] | B. | [2,4] | C. | {0,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com