【題目】如圖所示,在中,,,相交于點M.設(shè).

1)試用向量表示.

2)在線段上取點E,在線段取點F,使過點M.設(shè),,其中重合時,,,此時;當重合時,,,此時.能否由此得出般結(jié)論:不論在線段上如何變動,等式恒成立,請說明理由.

【答案】1;(2)見解析.

【解析】

(1)設(shè),根據(jù)三點共線,得一個等量關(guān)系;再根據(jù)三點共線,得另一個等量關(guān)系,最后解方程組即得結(jié)果;

2)根據(jù)三點共線,得,再根據(jù)平面向量基本定理得,最后消去即得結(jié)論.

1)不妨設(shè),一方面由三點共線,可知存在,且)使得,則,于是.

,所以,從而.另一方面由三點共線,可知存在)使得,則,于是.

,

所以,

從而.

由①②可得,.

.

2)可以得出結(jié)論.理由:

由于三點共線,所以存在實數(shù))使得,于是.

,,

所以,

于是,

從而消去即得.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義域為的偶函數(shù),當時,,若關(guān)于的方程有且僅有6個不同實數(shù)根,則實數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線、與平面、,下列命題:

①若平行內(nèi)的一條直線,則;②若垂直內(nèi)的兩條直線,則;③若,,且,,則;④若,,且,則;⑤若,,則;⑥若,,,則

其中正確的命題為______(填寫所有正確命題的編號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個風雨交加的夜里,某水庫閘房(設(shè)為A)到某指揮部(設(shè)為B)的電話線路有一處發(fā)生了故障.這是一條長的線路,想要盡快地查出故障所在.如果沿著線路一小段小段地查找,困難很多,每查一小段需要很長時間.

(1)維修線路的工人師傅隨身帶著話機,他應(yīng)怎樣工作,才能每查一次,就把待查的線路長度縮減一半?

(2)要把故障可能發(fā)生的范圍縮小到,最多要查多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)隨著手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構(gòu)對使用微信交流的態(tài)度進行調(diào)查,隨機抽取了50人,他們年齡的頻數(shù)分布及對使用微信交流的贊成人數(shù)如下表:

年齡(單位:歲)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

頻數(shù)

5

10

15

10

5

5

贊成人數(shù)

5

10

12

7

2

1

(1)若以年齡45歲為分界點,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為使用微信交流的態(tài)度與人的年齡有關(guān).

年齡不低于45歲的人數(shù)

年齡低于45歲的人數(shù)

合計

贊成的人數(shù)

不贊成的人數(shù)

合計

(2)若從年齡在[25,35)和[55,65)的被調(diào)查人中按照分層抽樣的方法選取6人進行追蹤調(diào)查,并給予其中3紅包獎勵,求3人中至少有1人年齡在[55,65)的概率.

參考公式:,.

參考數(shù)據(jù):

0.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知斜三棱柱ABC-A1B1C1的側(cè)面A1ACC1與底面ABC垂直,∠ABC=900,BC=2,AC=,且AA1⊥A1C,AA1=A1C.

(Ⅰ)求側(cè)棱A1A與底面ABC所成角的大小

(Ⅱ)求側(cè)面A1ABB1與底面ABC所成二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知五面體ABCDEF中,四邊形CDEF為矩形,,CD2DE2AD2AB4,AC=

1)求證:AB平面ADE;

2)求平面EBC與平面BCF所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右焦點為,右頂點為,已知,其中為原點,為橢圓的離心率.

(1)求橢圓的方程;

(2)設(shè)過點的直線與橢圓交于點不在軸上),垂直于的直線與交于點,與軸交于點,若,且,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的極值;

(Ⅱ)若,,,使得),求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案