分析 (1)2$\sqrt{S_n}={a_n}$+1,可得4Sn=$({a}_{n}+1)^{2}$,n≥2時(shí),4Sn-1=$({a}_{n-1}+1)^{2}$,相減可得:(an+an-1)(an-an-1-2)=0.于是∴an-an-1=2.利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)bn=(-1)n-1an=(-1)n-1(2n-1).對(duì)n分類(lèi)討論即可得出.
(3)cn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$=$\frac{1}{(2n+1)\sqrt{2n-1}+(2n-1)\sqrt{2n+1}}$=$\frac{1}{2}(\frac{1}{\sqrt{2n-1}}-\frac{1}{\sqrt{2n+1}})$,
可得$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$=$(\sqrt{2n+1}+1)$×$\frac{1}{2}(1-\frac{1}{\sqrt{2n+1}})$=$\frac{n}{\sqrt{2n+1}}$.再利用單調(diào)性即可得出.
解答 解:(1)∵2$\sqrt{S_n}={a_n}$+1,∴4Sn=$({a}_{n}+1)^{2}$,
n≥2時(shí),4Sn-1=$({a}_{n-1}+1)^{2}$,∴4an=$({a}_{n}+1)^{2}$-$({a}_{n-1}+1)^{2}$,
化為:(an+an-1)(an-an-1-2)=0.
∵an+an-1>0,∴an-an-1=2.
n=1時(shí),4a1=$({a}_{1}+1)^{2}$,解得a1=1.
∴數(shù)列{an}是等差數(shù)列,公差為2.
∴an=1+2(n-1)=2n-1.
(2)∵bn=(-1)n-1an=(-1)n-1(2n-1).
n=2k為偶數(shù)時(shí),b2k-1+b2k=(4k-3)-(4k-1)=-2.
∴數(shù)列{bn}的前n項(xiàng)和Tn=-2k=-n.
n=2k-1為奇數(shù)時(shí),數(shù)列{bn}的前n項(xiàng)和Tn=Tn-1+bn=-(n-1)+(2n-1)=n.
綜上可得:Tn=(-1)n-1n.
(3)cn=$\frac{1}{{\sqrt{{a_n}{S_{2n+1}}}+\sqrt{{a_{n+1}}{S_{2n-1}}}}}$=$\frac{1}{(2n+1)\sqrt{2n-1}+(2n-1)\sqrt{2n+1}}$=$\frac{1}{2}(\frac{1}{\sqrt{2n-1}}-\frac{1}{\sqrt{2n+1}})$,
∴$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$=$(\sqrt{2n+1}+1)$×$\frac{1}{2}(1-\frac{1}{\sqrt{2n+1}})$=$\frac{n}{\sqrt{2n+1}}$.
令dn=$\frac{n}{\sqrt{2n+1}}$>0,則$\frac{7ap4bu3_{n+1}^{2}}{kw7n06w_{n}^{2}}$=$\frac{\frac{(n+1)^{2}}{2n+3}}{\frac{{n}^{2}}{2n+1}}$=$\frac{2{n}^{3}+5{n}^{2}+4n+1}{2{n}^{3}+3{n}^{2}}$>1.
可得dn+1>dn,因此數(shù)列{dn}單調(diào)遞增.
∴dn≥d1=$\frac{\sqrt{3}}{3}$.
∴$\sum_{i=1}^n{[{({\sqrt{2n+1}+1}){c_i}}]}$的最小值是$\frac{\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法、分類(lèi)討論方法,考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 8 | C. | $\frac{7}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 外切 | B. | 相離 | C. | 相交 | D. | 內(nèi)切 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com