13.已知命題p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q為真,則實(shí)數(shù)m的取值范圍是(  )
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

分析 命題p:?x∈R,x2-mx+1=0,則△≥0,解得m.可得¬p.q:?x∈R,ex-m>0,則m<ex,因此m≤0.根據(jù)¬p∧q為真,即可得出.

解答 解:命題p:?x∈R,x2-mx+1=0,則△=m2-4≥0,解得m≥2,或m≤-2.¬p為:m∈(-2,2).
q:?x∈R,ex-m>0,則m<ex,因此m≤0.
若¬p∧q為真,
則實(shí)數(shù)m的取值范圍是(-2,0].
故選:B.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、方程與不等式的解法、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若命題“?t∈R,t2-2t-a<0”是假命題,則實(shí)數(shù)a的取值范圍是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若復(fù)數(shù)z滿足iz=l+3i,其中i為虛數(shù)單位,則$\overline z$=(  )
A.-3+iB.-3-iC.3+iD.3-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合$A=\{x|y=\sqrt{2x-{x^2}}\}$,B={x|-1<x<1},則A∪B=( 。
A.[0,1)B.(-1,2)C.(-1,2]D.(-∞,0]∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,則AC=( 。
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在面積為S的三角形ABC的邊AB上任意取一點(diǎn)P,則三角形PBC的面積大于$\frac{S}{4}$的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.通過(guò)隨機(jī)詢問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下2×2列聯(lián)表:
男生女生合計(jì)
挑同桌304070
不挑同桌201030
總計(jì)5050100
(Ⅰ)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
(Ⅱ)根據(jù)以上2×2列聯(lián)表,是否有95%以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=1+logmx(m>0且m≠1)的圖象恒過(guò)點(diǎn)M,若直線$\frac{x}{a}+\frac{y}=1$(a>0,b>0)經(jīng)過(guò)點(diǎn)M,則a+b的最小值為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.右程序框圖的算法思路源于我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”.執(zhí)行該程序框圖,若輸入的a,b分別為24,39,則輸出的a=( 。
A.2B.3C.4D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案