【題目】已知函數(shù)的定義域?yàn)?/span>

1)求實(shí)數(shù)的取值范圍;

2)設(shè)實(shí)數(shù)的最大值,若實(shí)數(shù),,滿(mǎn)足,求的最小值.

【答案】1;(2

【解析】

1)由定義域?yàn)?/span>R,只需求解|x3|+|x|的最小值,即可得實(shí)數(shù)m的取值范圍(2)根據(jù)(1)實(shí)數(shù)t的值,利用柯西不等式即可求解最小值.

(1)函數(shù)的定義域?yàn)?/span>R

那么|x3|+|x|m0對(duì)任意x恒成立,∴只需m≤(|x3|+|x|min

根據(jù)絕對(duì)值不等式|x3|+|x||x3x|3

3m0,所以m3,

故實(shí)數(shù)m的取值范圍(﹣∞,3]

2)由(1)可知m的最大值為3,即t3

那么a2+b2+c2t29,

a2+1+b2+1+c2+112

由柯西不等式可得()(a2+1+b2+1+c2+1)≥(1+1+129,

∴(,當(dāng)abc時(shí)取等號(hào),

故得的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn),是拋物線(xiàn)上的兩點(diǎn),是坐標(biāo)原點(diǎn),且.

(1)若,求的面積;

(2)設(shè)是線(xiàn)段上一點(diǎn),若的面積相等,求的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn)的離心率為,過(guò)其右焦點(diǎn)作斜率為的直線(xiàn),交雙曲線(xiàn)的兩條漸近線(xiàn)于兩點(diǎn)(點(diǎn)在軸上方),則( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某漁船在航行中不幸遇險(xiǎn),發(fā)出呼叫信號(hào),我海軍艦艇在處獲悉后,立即測(cè)出該漁船在方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線(xiàn)的水平角)為,距離為15海里的處,并測(cè)得漁船正沿方位角為的方向,以15海里/小時(shí)的速度向小島靠攏,我海軍艦艇立即以海里/小時(shí)的速度前去營(yíng)救,求艦艇靠近漁船所需的最少時(shí)間和艦艇的航向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率為.不過(guò)原點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),設(shè)直線(xiàn),直線(xiàn),直線(xiàn)的斜率分別為,且成等比數(shù)列.

(1)求的值;

(2)若點(diǎn)在橢圓上,滿(mǎn)足的直線(xiàn)是否存在?若存在,求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,已知四邊形為平行四邊形,平面平面,的中點(diǎn),,,.

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列命題的真假.

1)過(guò)一條直線(xiàn)的平面有無(wú)數(shù)多個(gè);

2)如果兩個(gè)平面有兩個(gè)公共點(diǎn),那么它們就有無(wú)數(shù)多個(gè)公共點(diǎn),并且這些公共點(diǎn)都在直線(xiàn)上;

3)兩個(gè)平面的公共點(diǎn)組成的集合,可能是一條線(xiàn)段;

4)兩個(gè)相交平面可能存在不在一條直線(xiàn)上的3個(gè)公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)隨機(jī)詢(xún)問(wèn)名不同性別的大學(xué)生在購(gòu)買(mǎi)食物時(shí)是否看營(yíng)養(yǎng)說(shuō)明,得到如下列聯(lián)表:

總計(jì)

讀營(yíng)養(yǎng)說(shuō)明

不讀營(yíng)養(yǎng)說(shuō)明

總計(jì)

附:

(1)由以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別和是否看營(yíng)養(yǎng)說(shuō)明有關(guān)系呢?

(2)從被詢(xún)問(wèn)的名不讀營(yíng)養(yǎng)說(shuō)明的大學(xué)生中隨機(jī)選取名學(xué)生,求抽到女生人數(shù)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,某鐵制零件由一個(gè)正四棱柱和一個(gè)球組成,已知正四棱柱底面邊長(zhǎng)與球的直徑均為1cm,正四棱柱的高為2cm.現(xiàn)有這種零件一盒共50kg,取鐵的密度為.

1)估計(jì)有多少個(gè)這樣的零件;

2)如果要給這盒零件的每個(gè)零件表面涂上一種特殊的材料,則需要能涂多少平方厘米的材料(球與棱柱接口處的面積不計(jì),結(jié)果精確到)?

查看答案和解析>>

同步練習(xí)冊(cè)答案