15.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2.左、右頂點(diǎn)分別為A、B,虛軸的上、下端點(diǎn)分別為C、D.若線段BC與雙曲線的漸近線的交點(diǎn)為E,且∠BF1E=∠CF1E,則雙曲線的離心率為( 。
A.1+$\sqrt{6}$B.1+$\sqrt{5}$C.1+$\sqrt{3}$D.1+$\sqrt{2}$

分析 求出雙曲線的漸近線方程,求得CB的方程,解得E的坐標(biāo),即為中點(diǎn),運(yùn)用等腰三角形的性質(zhì),可得CF1=BF1,再由兩點(diǎn)的距離公式和離心率公式,解方程可得所求值.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1$(a>0,b>0)的漸近線方程為y=±$\frac{a}$x,
由B(a,0),C(0,b),可得直線CB的方程為bx+ay=ab,
聯(lián)立漸近線方程y=$\frac{a}$x,解得E($\frac{a}{2}$,$\frac{2}$),
即有E為CB的中點(diǎn),
由∠BF1E=∠CF1E,
即F1E平分∠CF1B,
可得三角形CF1B為等腰三角形,
即有CF1=BF1,即$\sqrt{^{2}+{c}^{2}}$=a+c,
又a2+b2=c2,可得c2=2a2+2ac,
由e=$\frac{c}{a}$,可得e2-2e-2=0,
解得e=1+$\sqrt{3}$.
故選:C.

點(diǎn)評 本題考查雙曲線的離心率的求法,注意運(yùn)用雙曲線的漸近線方程,等腰三角形的性質(zhì),以及方程的思想,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ln(x+1)+$\frac{2a}{x+a}({a>0})$.
(I)討論函數(shù)f(x)在(0,+∞)上的單調(diào)性;
(II)設(shè)函數(shù)f(x)存在兩個(gè)極值點(diǎn),并記作x1,x2,若f(x1)+f(x2)>4,求正數(shù)a的取值范圍;
(III)求證:當(dāng)a=1時(shí),f(x)>$\frac{1}{{{e^{x+1}}}}+\frac{1}{x+1}$(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax有極值1,這里e是自然對數(shù)的底數(shù).
(1)求實(shí)數(shù)a的值,并確定1是極大值還是極小值;
(2)若當(dāng)x∈[0,+∞)時(shí),f(x)≥mxln(x+1)+1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.一塊長為20cm,寬為12cm的矩形鐵皮,將其四個(gè)角截去一個(gè)邊長為a的小正方形,然后折成一個(gè)無蓋的盒子,寫出這個(gè)盒子的體積V與邊長x的函數(shù)關(guān)系式,并討論這個(gè)函數(shù)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,頂點(diǎn)A(a,0)到漸近線的距離為$\frac{\sqrt{2}}{3}$c,則雙曲線的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在數(shù)列{an}中,對任意n∈N*,都有an+1-2an=0,則$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于( 。
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,已知:$\frac{a+b}{a}=\frac{sinB}{sinB-sinA}$,且cos(A-B)+cosC=1-cos2C.
(1)判斷△ABC的形狀,并證明;
(2)求$\frac{a+c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等比數(shù)列{an}中,a3a7=4a4=4,則a8等于(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}中,a1=2,當(dāng)n≥2時(shí),$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{{2}^{n-1}}$+n-1,設(shè)bn=$\frac{{a}_{n}}{{2}^{n}}$-1,則$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{20}}$等于( 。
A.$\frac{19}{10}$B.$\frac{29}{20}$C.$\frac{40}{21}$D.$\frac{36}{19}$

查看答案和解析>>

同步練習(xí)冊答案