19.美索不達(dá)米亞平原是人類文明的發(fā)祥地之一.美索不達(dá)米亞人善于計(jì)算,他們創(chuàng)造了優(yōu)良的計(jì)數(shù)系統(tǒng),其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運(yùn)算都精確到小數(shù)點(diǎn)后兩位)則輸出結(jié)果為( 。
A.2.81B.2.82C.2.83D.2.84

分析 分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是利用循環(huán)計(jì)算n值并輸出,模擬程序的運(yùn)行過程,即可得到答案.

解答 解:模擬程序的運(yùn)行,可得
a=8,n=2,ξ=0.5
m=4,n=3
不滿足條件|m-n|<0.5,m=2.67,n=2.84
滿足條件|m-n|<0.5,退出循環(huán),輸出n的值為2.84.
故選:D.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,在寫程序的運(yùn)行結(jié)果時(shí),模擬程序的運(yùn)行過程是解答此類問題最常用的辦法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{2{x}^{-1},x>1}\end{array}\right.$,則f(f(3))的值是(  )
A.$\frac{1}{5}$B.3C.$\frac{2}{3}$D.$\frac{13}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=px-\frac{p}{x}-2lnx$.
(1)若p=2,求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),設(shè)函數(shù)$g(x)=\frac{2e}{x}$,若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,則輸出的S=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.圓C經(jīng)過點(diǎn)(1,0),且與直線x=-1,y=4都相切,則點(diǎn)C的坐標(biāo)為(1,2)或(9,-6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果S=(  )
A.9B.15C.20D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如下圖所示的程序框圖,輸出S的值是(  )
A.30B.10C.15D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知tanx=2,
(1)求$\frac{2}{3}{sin^2}x+\frac{1}{4}{cos^2}x$的值.
(2)求$\frac{cosx+sinx}{cosx-sinx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,$\frac{cosC}{sinC}$=$\frac{cosA+cosB}{sinA+sinB}$.
(1)求∠C的大小;
(2)若c=2,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案