3.已知p,q是兩個(gè)命題,若“(?p)∨q”是假命題,則( 。
A.p假q假B.p真 q真C.p假q真D.p真q假

分析 由已知結(jié)合復(fù)合命題真假判斷的真值表,可得答案.

解答 解:若“(?p)∨q”是假命題,
則?p是假命題,q是假命題,
即p是真命題,q是假命題,
故選:D

點(diǎn)評 本題以命題的真假判斷與應(yīng)用為載體,考查了復(fù)合命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某工廠制造A種儀器45臺(tái),B種儀器55臺(tái),現(xiàn)需用薄鋼板給每臺(tái)儀器配一個(gè)外殼.已知鋼板有甲、乙兩種規(guī)格:甲種鋼板每張面積2m2,每張可做A種儀器外殼3個(gè)和B種儀器外殼5個(gè),乙種鋼板每張面積3m2,每張可做A種儀器外殼6個(gè)和B種儀器外殼6個(gè).問甲、乙兩種鋼板各用多少張才能用料最省(“用料最省”是指所用鋼板的總面積最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知x1,x2,x3,…xn的平均數(shù)為4,標(biāo)準(zhǔn)差為7,則3x1+2,3x2+2,…,3xn+2的平均數(shù)是14;標(biāo)準(zhǔn)差是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法錯(cuò)誤的是( 。
A.設(shè)p:f(x)=x3+2x2+mx+1是R上的單調(diào)增函數(shù),$q:m≥\frac{4}{3}$,則p是q的必要不充分條件
B.若命題$p:?{x_0}∈R,x_0^2-{x_0}+1≤0$,則¬p:?x∈R,x2-x+1>0
C.奇函數(shù)f(x)定義域?yàn)镽,且f(x-1)=-f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個(gè)不為0,則x2+y2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若0<m<n,則下列結(jié)論正確的是( 。
A.2m>2nB.0.5m<0.5n
C.${log_2}^m>{log_2}^n$D.${log_{0.5}}^m>{log_{0.5}}^n$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.四面體ABCD中,AB和CD為對棱.設(shè)AB=a,CD=b,且異面直線AB與CD間的距離為d,夾角為θ.
(Ⅰ)若θ=$\frac{π}{2}$,且棱AB垂直于平面BCD,求四面體ABCD的體積;
(Ⅱ)當(dāng)θ=$\frac{π}{2}$時(shí),證明:四面體ABCD的體積為一定值;
(Ⅲ)求四面體ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若命題:“?x∈R,kx2-kx-1≥0”是假命題,則實(shí)數(shù)k的取值范圍是(-4,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某家電專賣店試銷A,B,C三種新型空調(diào),銷售情況記錄如下:
第一周第二周第三周第四周第五周
A型數(shù)量(臺(tái))101015A4A5
B型數(shù)量(臺(tái))101213B4B5
C型數(shù)量(臺(tái))15812C4C5
(1)求A型空調(diào)前三周的平均周銷售量;
(2)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從該家電專賣店前三周售出的所有空調(diào)中隨機(jī)抽取一臺(tái),求抽到的空調(diào)“是B型空調(diào)或是第一周售出空調(diào)”的概率;
(3)根據(jù)C型空調(diào)連續(xù)3周銷售情況,預(yù)估C型空調(diào)連續(xù)5周的平均周銷量為10臺(tái).當(dāng)C型空調(diào)周銷售量的方差最小時(shí),求C4,C5的值.
參考公式:
樣本數(shù)據(jù)x1,x2,…,xn的方差是:${s^2}=\frac{1}{n}[{({x_1}-\overline x)^2}+{({x_2}-\overline x)^2}+…+{({x_n}-\overline x)^2}]$,其中$\overline x$為樣本平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn滿足Sn=$\frac{2}{3}$an+$\frac{1}{3}$,則{an}的通項(xiàng)公式${a}_{n}=(-2)^{n-1}$.

查看答案和解析>>

同步練習(xí)冊答案