已知函數(shù)f(x)=Atan(ωx+ϕ)(ω>0,|ϕ|<
π
2
)的部分圖象如圖,則f(
24
)
=
 
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:由正切型函數(shù)的圖象得到其周期,由周期公式求得ω,結(jié)合函數(shù)圖象過點(
8
,0),(0,1)求得φ與A的值,則函數(shù)解析式可求,代入x=
24
得答案.
解答: 解:由題意可知T=
π
2
,∴ω=2,
函數(shù)的解析式為:f(x)=Atan(ωx+φ),
∵函數(shù)過(
8
,0),
∴0=Atan(
4
+φ),
∴φ=
π
4
,
圖象經(jīng)過(0,1),
∴1=Atan
π
4
,則A=1,
∴f(x)=tan(2x+
π
4
),
f(
24
)
=tan(
12
+
π
4
)=-
3

故答案為:-
3
點評:本題考查了正切函數(shù)的圖象和性質(zhì),解答此題的關(guān)鍵是正確求出函數(shù)周期,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|(x-1)(x+2)>0},B={x|2-3x≤0},C={y|y=x2},求:
①A∪C;
②(∁UA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)滿足:2f(x)+xf′(x)>x2,則f(x)在區(qū)間[-1,1]內(nèi)( 。
A、沒有零點
B、恰有一個零點
C、至少一個零點
D、至多一個零點

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2a2x-1,g(x)=x2+ax-1,若f(1)=g(1)且a≠1,則2a÷a2=( 。
A、±2
2
B、±
2
2
C、2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
3
x3-
a+1
2
x2+x+b
,其中a,b∈R.
(1)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=5x-4,求f(x)的解析式;
(2)當(dāng)函數(shù)f(x)在x=2處取得極值為
1
3
時,試確定f(x)在區(qū)間[
1
2
,3]
上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的方程sin x+2|sin x|=k在x∈[0,2π]內(nèi)有且僅有兩個不同的實數(shù)解,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x+1的零點所在區(qū)間是( 。
A、(-3,-2)
B、(-2,-1)
C、(-1,0)
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,為了解某海域海底構(gòu)造,在海平面內(nèi)一條直線上的A,B,C三點進(jìn)行測量,已知AB=50m,BC=120m,于A處測得水深A(yù)D=80m,于B處測得水深BE=200m,于C處測得水深CF=110m,則∠DEF的余弦值為( 。
A、
16
65
B、
19
65
C、
16
57
D、
17
57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
2
 x2+2(a-1)x+2在區(qū)間(-∞,4]上單調(diào)遞增,那么實數(shù)a的取值范圍是( 。
A、a≤-3B、a≥-3
C、a≤5D、a≥5

查看答案和解析>>

同步練習(xí)冊答案