分析 (1)根據(jù)函數(shù)f(x)有意義,可得$\left\{\begin{array}{l}\frac{2-x}{3+x}≥0\\{3^x}-\frac{1}{3}>0\end{array}\right.$,解出x的范圍可得定義域M.
(2)講g(x)化簡,轉(zhuǎn)化為二次函數(shù)的問題,利用x∈M時,考查單調(diào)性可得值域.
解答 解:(1)由已知可得$\left\{\begin{array}{l}\frac{2-x}{3+x}≥0\\{3^x}-\frac{1}{3}>0\end{array}\right.⇒\left\{\begin{array}{l}-3<x≤2\\ x>-1\end{array}\right.$,
∴-1<x≤2,
所以M=(-1,2].
(2)由$g(x)={4^{x+\frac{1}{2}}}-{2^{x+2}}+1=2•{2^{2x}}+4•{2^x}+1=2{({{2^x}-1})^2}-1$,
∵x∈M,即-1<x≤2,
∴$\frac{1}{2}<{2^x}<4$,
∴當(dāng)2x=1,即x=0時,g(x)min=-1,
當(dāng)2x=4,即x=2時,g(x)max=17,
故得g(x)的值域為[-1,17].
點(diǎn)評 本題考查定義域的求法和指數(shù)函數(shù)的化簡能力,轉(zhuǎn)化思想,利用二次函數(shù)和指數(shù)的性質(zhì)的單調(diào)性求解值域,屬于函數(shù)函數(shù)性質(zhì)應(yīng)用題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 關(guān)于x軸對稱 | B. | 關(guān)于y軸對稱 | C. | 關(guān)于y=x軸對稱 | D. | 關(guān)于原點(diǎn)軸對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
區(qū)間 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) |
人數(shù) | 28 | a | b |
喜歡閱讀國學(xué)類 | 不喜歡閱讀國學(xué)類 | 合計 | |
男 | 16 | 4 | 20 |
女 | 8 | 14 | 22 |
合計 | 24 | 18 | 42 |
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com