16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,則f(f($\frac{1}{9}$))的值是$\frac{1}{9}$.

分析 由已知中函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,代入可得答案.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,(x>0)}\\{{3}^{x},(x≤0)}\end{array}\right.$,
∴f($\frac{1}{9}$)=-2,
f(f($\frac{1}{9}$))=f(-2)=$\frac{1}{9}$,
故答案為:$\frac{1}{9}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,函數(shù)求值,難度基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某公司生產(chǎn)一種產(chǎn)品,第一年投入資金1 000 萬(wàn)元,出售產(chǎn)品收入 40 萬(wàn)元,預(yù)計(jì)以后每年的投入資金是上一年的一半,出售產(chǎn)品所得收入比上一年多 80 萬(wàn)元,同時(shí),當(dāng)預(yù)計(jì)投入的資金低于 20 萬(wàn)元時(shí),就按 20 萬(wàn)元投入,且當(dāng)年出售產(chǎn)品收入與上一年相等.
(Ⅰ)求第n年的預(yù)計(jì)投入資金與出售產(chǎn)品的收入;
(Ⅱ)預(yù)計(jì)從哪一年起該公司開始盈利?(注:盈利是指總收入大于總投入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2ex-$\frac{1}{2}$ax
(Ⅰ)求f(x)的單調(diào)區(qū)間
(Ⅱ)若x≥0時(shí),f(x)≥(x-a)2-$\frac{1}{2}$ax-3恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2+bx.
(Ⅰ)若函數(shù)f(x)在x=3處的切線與直線24x-y+1=0平行,函數(shù)f(x)在x=1處取得極值,求函數(shù)f(x)的遞減區(qū)間;
(Ⅱ)若a=1,且函數(shù)f(x)在[-1,1]上是減函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$(a>0,b>0)與拋物線$y=\frac{1}{8}{x^2}$有一個(gè)公共焦點(diǎn)F,雙曲線上過點(diǎn)F且垂直于y軸的弦長(zhǎng)為$\frac{{2\sqrt{3}}}{3}$,則雙曲線的離心率為( 。
A.2B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若向量$\overrightarrow a=(sin2α,cosα),\overrightarrow b=(1,cosα)$,且$tanα=\frac{1}{2}$,則$\overrightarrow a•\overrightarrow b$的值是( 。
A.$\frac{8}{5}$B.$\frac{6}{5}$C.$\frac{4}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.袋中有3個(gè)大小、質(zhì)量相同的小球,每個(gè)小球上分別寫有數(shù)字0,1,2,隨機(jī)摸出一個(gè)將其上的數(shù)字記為a1,然后放回袋中,再次隨機(jī)摸出一個(gè),將其上的數(shù)字記為a2,依次下去,第n次隨機(jī)摸出一個(gè),將其上的數(shù)字記為an記ξn=a1a2…an,則(1)隨機(jī)變量ξ2的期望是1;
(2)當(dāng)${ξ_n}={2^{n-1}}$時(shí)的概率是$\frac{n}{{3}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列命題中,正確的一個(gè)命題是( 。
A.“?x∈R,使得x2-1<0”的否定是:“?x∈R,均有x2-1>0”
B.“若x=3,則x2-2x-3=0”的否命題是:“若x≠3,則x2-2x-3≠0”
C.“存在四邊相等的四邊形不是正方形”是假命題
D.“若cosx=cosy,則x=y”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展開式中第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列.
(Ⅰ)求n的值;
(Ⅱ)此展開式中是否有常數(shù)項(xiàng)?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案