11.在平面直角坐標系XOY中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α為參數(shù)),在以原點為極點,x軸正半軸為極坐標系中,直線l的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點M(0,2),l與C交于A、B兩點,且AB的中點為N,求|MN|.

分析 (1)利用三種方程的轉(zhuǎn)化方法,即可求C的普通方程和l的傾斜角;
(2)利用參數(shù)的幾何意義,即可求|MN|.

解答 解:(1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+3cosα}\\{y=1+3sinα}\end{array}\right.$(α為參數(shù)),普通方程(x-2)2+(y-1)2=9…(2分)
.直線l的極坐標方程為ρsin(θ-$\frac{π}{4}$)=$\sqrt{2}$,即$\frac{\sqrt{2}}{2}$ρsinθ-$\frac{\sqrt{2}}{2}$ρcosθ=$\sqrt{2}$,∴y=x+2
∴l(xiāng)的傾斜角α=$\frac{π}{4}$…(5分)
(2)l的參數(shù)方程:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),代入曲線C,整理可得${t}^{2}-\sqrt{2}t-4=0$,
設(shè)A,B對應(yīng)的參數(shù)分別為t1,t2,則t1+t2=$\sqrt{2}$,∴|MN|=$\frac{1}{2}$|t1+t2|=$\frac{\sqrt{2}}{2}$.

點評 本題考查三種方程的轉(zhuǎn)化,考查參數(shù)方程的運用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x-3y+6≥0\\ 2x+y-4≤0\\ y+2≥0\end{array}\right.$則z=x+y的最小值為-14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.過點P(1,-2)的直線l與圓C:(x-2)2+(y+3)2=9交于A,B兩點,當∠ACB最小時,直線l的方程為(  )
A.x-y-3=0B.x+y+1=0C.2x+y=0D.2x-y-4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow$,|$\overrightarrow{OB}$|=|$\overrightarrow$|=2,|$\overrightarrow{OA}$|=|$\overrightarrow{a}$|=2∠AOB=60°,求|$\overrightarrow{a}$-$\overrightarrow$|.
(2)已知向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是不共線向量,實數(shù)x,y滿足(3x-4y)$\overrightarrow{{e}_{1}}$+(2x-3y)$\overrightarrow{{e}_{2}}$=6$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,求x-y.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若復數(shù)z滿足$\frac{\overline z}{1+i}=i$,其中i為虛數(shù)單位,則z=( 。
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,角A、B、C所對的邊分別為a、b、c,且acosB+bcosA=$\sqrt{3}$,△ABC的外接圓面積為π,則△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知拋物線C:x2=2py(p>0),若直線y=2x,被拋物線所截弦長為4$\sqrt{5}$,則拋物線C的方程為( 。
A.x2=8yB.x2=4yC.x2=2yD.x2=y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若隨機變量X服從正態(tài)分布N(μ,σ2)(σ>0),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,已知某隨機變量Y近似服從正態(tài)分布N(2,σ2),若P(Y>3)=0.1587,則P(Y<0)=( 。
A.0.0013B.0.0228C.0.1587D.0.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸異于原點的交點M處的切線為l1,g(x-1)與x軸的交點N處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知t∈R,求函數(shù)y=f[g(x)+t],x∈[1,e]的最小值;
(Ⅲ)令F(x)=g(x)+g′(x),x∈(1,+∞),x2>x1>1,對于兩個大于1的實數(shù)α,β滿足:α=mx1+(1-m)x2,β=(1-m)x1+mx2,m∈(0,1).
求證:|F(α)-F(β)|<|F(x1)-F(x2)|成立.

查看答案和解析>>

同步練習冊答案