15.?dāng)?shù)列0,3,8,15,24,…的一個(gè)通項(xiàng)公式an=n2-1.

分析 根據(jù)題意,依據(jù)數(shù)列的各項(xiàng)分析可得a1=12-1=0,a2=22-1=3,a3=32-1=8,由歸納推理的方法,分析可得答案.

解答 解:根據(jù)題意,對于數(shù)列數(shù)列0,3,8,15,24,…
有a1=12-1=0,
a2=22-1=3,
a3=32-1=8,

則可以歸納an=n2-1;
故答案為:an=n2-1.

點(diǎn)評 本題考查數(shù)列的表示法,涉及歸納推理的運(yùn)用,關(guān)鍵是分析數(shù)列,得到各項(xiàng)變化的規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩平面α,β的法向量分別為$\overrightarrow u=({3,-1,z}),\overrightarrow v=({-2,-y,1})$,若α⊥β,則y+z的值是( 。
A.-3B.6C.-6D.-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某幾何體的正視圖與俯視圖如圖所示,若俯視圖中的多邊形為正六邊形,則該幾何體的側(cè)視圖的面積為$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,已知c=2,若sin2A+sin2B-sinAsinB=sin2C,則a+b的取值范圍(2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若向量$\overrightarrow{a}$=(1,λ,2),$\overrightarrow$=(2,-1,2),且$\overrightarrow{a}$⊥$\overrightarrow$,則λ等于6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c,已知$\frac{a-c}{a-b}$=$\frac{sin(A+C)}{sinA+sinC}$.
(Ⅰ)求角C的大; 
(Ⅱ)若|$\overrightarrow{CA}$-$\frac{1}{2}$$\overrightarrow{CB}$|=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列結(jié)論錯(cuò)誤的個(gè)數(shù)是( 。
①“a=0”是“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件;
②命題p:?x∈[0,1],ex≥1,命題q:?x∈R,x2+x+1<0,則p∨q為真;
③“若am2<bm2,則a<b”的逆命題為真命題;
④若p∨q為假命題,則p、q均為假命題.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z=(m2-5m+6)+(m2-3m)i是
(1)零;(2)虛數(shù);(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+3cosθ}\\{y=-1+3sinθ}\end{array}\right.$(θ為參數(shù)),直線l的方程為x-3y+2=0,則曲線C上到直線l距離為2的點(diǎn)的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案