10.觀察下列各式:$\frac{1}{1+2}$=$\frac{1}{3}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{1}{2}$,$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{3}{5}$…,則$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+12}$等于( 。
A.$\frac{5}{6}$B.$\frac{11}{12}$C.$\frac{11}{13}$D.$\frac{12}{13}$

分析 觀察分子分母的變化規(guī)律即可得到答案.

解答 解:$\frac{1}{1+2}$=$\frac{1}{3}$,
$\frac{1}{1+2}$+$\frac{1}{1+2+3}$=$\frac{1}{2}$=$\frac{2}{4}$,
$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+$\frac{1}{1+2+3+4}$=$\frac{3}{5}$…,
則$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+…+12}$=$\frac{11}{13}$,
故選:C.

點評 本題考查了歸納推理的問題,關(guān)鍵是找到規(guī)律,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左,右焦點M、N.若以橢圓的焦點為頂點,以橢圓長軸的頂點為焦點作一雙曲線恰為等軸雙曲線.
(1)求橢圓的離心率;
(2)設L為過橢圓右焦點N的直線,交橢圓于P、Q兩點,當△MPQ周長為8時;求△MPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設函數(shù)f(x)=$\frac{1-x}{1+x}$
(1)試證明f(x)在(-∞,1)上為單調(diào)遞減函數(shù);
(2)若函數(shù)g(x)=($\frac{1}{2}$)f(x),且g(x)在區(qū)間[-3,-2]上沒有零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)的定義域為R,其圖象關(guān)于點(1,0)中心對稱,其導函數(shù)為f′(x),當x<1時,(x-1)[f(x)+(x-1)f′(x)]>0,則不等式xf(x+1)>f(2)的解集為(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦點F(-c,0)(c>0)作圓x2+y2=$\frac{a^2}{4}$的切線,切點為E,延長FE交雙曲線右支于點P.且滿足$\overrightarrow{OP}=\overrightarrow{FE}+\overrightarrow{OE}$,則雙曲線的漸近線方程為( 。
A.$\sqrt{10}$x±2y=0B.2x±$\sqrt{10}$y=0C.$\sqrt{6}$x±2y=0D.2x±$\sqrt{6}$y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.定義:設f(x)為(a,b)上的可導函數(shù),若f′(x)為增函數(shù),則稱f(x)為(a,b)上的凸函數(shù).
(1)判斷函數(shù)y=x3與y=lg$\frac{1}{x}$是否為凸函數(shù);
(2)設f(x)為(a,b)上的凸函數(shù),求證:若λ12+…+λn=1,λi>0(i=1,2,…,n),則?xi∈(a,b)(i=1,2,…,n)恒有λ1f(x1)+λ2f(x2)+…+λnf(xn)=f(λ1x12x2+…+λnxn)成立;
(3)設a,b,c>0,n∈N*,n≥b,求證:an+bn+cn≥an-5b3c2+bn-5c3a2+cn-5a3b2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知α,β,γ為不同的平面,m,n為不同的直線,則m⊥β的一個充分條件是( 。
A.α∩γ=m,α⊥γ,β⊥γB.α⊥β,β⊥γ,m⊥αC.α⊥β,α∩β=n,m⊥nD.n⊥α,n⊥β,m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點和上頂點分別為A,B,左、右焦點分別是F1,F(xiàn)2,在線段AB上有且只有一個點P滿足PF1⊥PF2,則橢圓的離心率為( 。
A.$\frac{\sqrt{5}-1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.“a2=1”是“函數(shù)f(x)=ln(1+ax)-ln(1+x)為奇函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.即不充分也不必要條件

查看答案和解析>>

同步練習冊答案