14.已知實(shí)數(shù)a,b滿足0<a<1,-1<b<1,則函數(shù)$y=\frac{1}{3}a{x^3}+a{x^2}+b$有三個(gè)零點(diǎn)的概率為$\frac{5}{16}$.

分析 由函數(shù)有極值可得b<a2,由定積分可求滿足題意的區(qū)域面積,由幾何概型的概率公式可得.由函數(shù)有極值可得b<a2,由定積分可求滿足題意的區(qū)域面積,由幾何概型的概率公式可得.

解答 解:對(duì)y=$\frac{1}{3}$ax3+ax2+b求導(dǎo)數(shù)可得y′=ax2+2ax,令ax2+2ax=0,可得x=0,或x=-2,0<a<1,
x=-2是極大值點(diǎn),x=0是極小值點(diǎn),函數(shù)y=$\frac{1}{3}$ax3+ax2+b
有三個(gè)零點(diǎn),可得$\left\{\begin{array}{l}{f(-2)>0}\\{f(0)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{-\frac{8}{3}a+4a+b>0}\\{b<0}\end{array}\right.$,
畫出可行域如圖:滿足函數(shù)y=$\frac{1}{3}$ax3+ax2+b有三個(gè)零點(diǎn),如圖深色區(qū)域,實(shí)數(shù)a,b滿足0<a<1,-1<b<1,為長(zhǎng)方形區(qū)域,所以長(zhǎng)方形的面積為:2,實(shí)數(shù)區(qū)域的面積為:$\frac{1}{2}$×(1+$\frac{1}{4}$)=$\frac{5}{8}$
∴所求概率為P=$\frac{\frac{5}{8}}{2}$=$\frac{5}{16}$,
故答案為:$\frac{5}{16}$.

點(diǎn)評(píng) 本題考查幾何概型的求解,涉及導(dǎo)數(shù)求解函數(shù)的極值,函數(shù)的零點(diǎn)以及線性規(guī)劃的應(yīng)用,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.18、甲、乙兩位同學(xué)參加數(shù)學(xué)文化知識(shí)競(jìng)賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次測(cè)試成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(Ⅰ)用莖葉圖表示這兩組數(shù)據(jù);
(Ⅱ)現(xiàn)要從中選派一人參加正式比賽,從所抽取的兩組數(shù)據(jù)求出甲、乙兩位同學(xué)的平均值和方差,據(jù)此你認(rèn)為選派哪位同學(xué)參加比賽較為合適?
(Ⅲ)若對(duì)加同學(xué)的正式比賽成績(jī)進(jìn)行預(yù)測(cè),求比賽成績(jī)高于80分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,橢圓與雙曲線有公共焦點(diǎn)F1,F(xiàn)2,它們?cè)诘谝幌笙薜慕稽c(diǎn)為A,且AF1⊥AF2
∠AF1F2=30°,則橢圓與雙曲線的離心率的之積為(  )
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為選拔選手參加“中國謎語大會(huì)”,某中學(xué)舉行了一次“謎語大賽”活動(dòng).為了了解本次競(jìng)賽學(xué)生的成績(jī)情況,從中抽取了部分學(xué)生的分?jǐn)?shù)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì).按照[50,60),[60,70),[70,80)[80,90),[90,100]的分組作出頻率分布直方圖如同1,并作出樣本分?jǐn)?shù)的莖葉圖如圖2(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中的x,y的值;
(Ⅱ)分?jǐn)?shù)在[90,100]的學(xué)生設(shè)為一等獎(jiǎng),獲獎(jiǎng)學(xué)金500元;分?jǐn)?shù)在[80,90)的學(xué)生設(shè)為二等獎(jiǎng),獲獎(jiǎng)學(xué)金200元.已知在樣本中,獲一、二等獎(jiǎng)的學(xué)生中各有一名男生,則從剩下的女生中任取三人,求獎(jiǎng)學(xué)金之和大于600的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.某路口的紅綠燈,紅燈時(shí)間為30秒,黃燈時(shí)間為5秒,綠燈時(shí)間為40秒,假設(shè)你在任何時(shí)間到達(dá)該路口是等可能的,則當(dāng)你到達(dá)該路口時(shí),看見不是黃燈的概率是( 。
A.$\frac{14}{15}$B.$\frac{1}{15}$C..$\frac{3}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過拋物線y2=2x焦點(diǎn)的直線交拋物線于A,B兩點(diǎn),若AB的中點(diǎn)M到該拋物線準(zhǔn)線的距離為5,則線段AB的長(zhǎng)度為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=ln(ax+b)+ex-1(a≠0).
(Ⅰ)當(dāng)a=-1,b=1時(shí),判斷函數(shù)f(x)的零點(diǎn)個(gè)數(shù);
(Ⅱ)若f(x)≤ex-1+x+1,求ab的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校對(duì)學(xué)生的思想品德、學(xué)業(yè)成績(jī)、社會(huì)實(shí)踐能力進(jìn)行綜合評(píng)價(jià),思想品德、學(xué)業(yè)成績(jī)、社會(huì)實(shí)踐能力評(píng)價(jià)指數(shù)分別記為x,y,z,每項(xiàng)評(píng)價(jià)指數(shù)都為1分、2分、3分、4分、5分五等,綜合評(píng)價(jià)指標(biāo)S=x+y+z,若S≥13,則該學(xué)生為優(yōu)秀學(xué)生.現(xiàn)從該校學(xué)生中,隨機(jī)抽取10名學(xué)生作為樣本,分為A,B兩組,其評(píng)價(jià)指數(shù)列表如下:
                                                                A組
學(xué)生編號(hào)A1A2A3A4A5
評(píng)價(jià)指數(shù)(x,y,z)(3,4,3)(4,3,4)(4,4,2)(4,3,5)(4,5,4)
B組
學(xué)生編號(hào) B1B2B3B4B5
評(píng)價(jià)指數(shù)(x,y,z)(3,5,3)(4,3,2)(5,4,4)(5,4,5)(4,5,3)
(1)從A,B兩組中各選一名學(xué)生,依次記為甲、乙,求乙的綜合評(píng)價(jià)指標(biāo)大于甲的綜合評(píng)價(jià)指標(biāo)的概率;
(2)若該校共有1500名學(xué)生,估計(jì)該校有多少名優(yōu)秀學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實(shí)數(shù) $a={log_2}3{,^{\;}}b=\int_1^2{({x+\frac{1}{x}})}dx{,^{\;}}c={log_{\frac{1}{3}}}\frac{1}{30}$,則a,b,c的大小關(guān)系是( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

同步練習(xí)冊(cè)答案